Abstract:
Engineered antibodies useful for site-specific conjugation by a transglutaminase are described. Also described are methods of site-specific conjugation of the antibodies, the site-specifically conjugated antibodies, and pharmaceutical compositions and uses related to the site-specifically conjugated antibodies.
Abstract:
PSMA binding FN3 domains, their conjugates, isolated nucleotides encoding the molecules, vectors, host cells, and methods of making thereof are useful in the generation of therapeutic molecules and treatment and diagnosis of diseases and disorders.
Abstract:
Provided herein are methods for site-specific conjugation of glycan intact antibodies by a transglutaminase. According to particular embodiments, the reaction conditions are maintained or reduced to a low-ionic strength condition, which allows for efficient and fast conjugation without the need for antibody deglycosylation. Also described are pharmaceutical compositions and uses related to the conjugation method.
Abstract:
Provided herein are isolated CD3×PSMA-bispecific antigen-binding molecules or bispecific antigen-binding fragment thereof wherein a FN3 domain specifically binds human prostate specific membrane antigen (PSMA) and a second antigen-binding site immunospecifically binds CD3. Also described are fusion proteins and related polynucleotides capable of encoding the provided fusion proteins and, cells expressing the provided fusion proteins. In addition, methods of using the provided isolated CD3×PSMA-bispecific antigen-binding molecules or bispecific antigen-binding fragment thereof are described.
Abstract:
PSMA binding FN3 domains, their conjugates, isolated nucleotides encoding the molecules, vectors, host cells, and methods of making thereof are useful in the generation of therapeutic molecules and treatment and diagnosis of diseases and disorders.
Abstract:
Improved methods of radiolabeling antibodies using click chemistry are described. Also described are pharmaceutical compositions and uses related to the radiolabeled antibodies produced by the methods.
Abstract:
Improved methods of radiolabeling antibodies using click chemistry are described. Also described are pharmaceutical compositions and uses related to the radiolabeled antibodies produced by the methods.
Abstract:
Cysteine engineered monospecific and bispecific EGFR and/or c-Met FN3 domain containing molecules comprising one or more free cysteine amino acids are prepared by mutagenizing a nucleic acid sequence of a parent molecule and replacing one or more amino acid residues by cysteine to encode the cysteine engineered FN3 domain containing monospecific or bispecific molecules; expressing the cysteine engineered FN3 domain containing molecules; and recovering the cysteine engineered FN3 domain containing molecule. Isolated cysteine engineered monospecific or bispecific FN3 domain containing molecules may be covalently attached to a detection label or a drug moiety and used therapeutically.
Abstract:
Cysteine engineered monospecific and bispecific EGFR and/or c-Met FN3 domain containing molecules comprising one or more free cysteine amino acids are prepared by mutagenizing a nucleic acid sequence of a parent molecule and replacing one or more amino acid residues by cysteine to encode the cysteine engineered FN3 domain containing monospecific or bispecific molecules; expressing the cysteine engineered FN3 domain containing molecules; and recovering the cysteine engineered FN3 domain containing molecule. Isolated cysteine engineered monospecific or bispecific FN3 domain containing molecules may be covalently attached to a detection label or a drug moiety and used therapeutically.
Abstract:
Cysteine engineered monospecific and bispecific EGFR and/or c-Met FN3 domain containing molecules comprising one or more free cysteine amino acids are prepared by mutagenizing a nucleic acid sequence of a parent molecule and replacing one or more amino acid residues by cysteine to encode the cysteine engineered FN3 domain containing monospecific or bispecific molecules; expressing the cysteine engineered FN3 domain containing molecules; and recovering the cysteine engineered FN3 domain containing molecule. Isolated cysteine engineered monospecific or bispecific FN3 domain containing molecules may be covalently attached to a detection label or a drug moiety and used therapeutically.