摘要:
This invention provides for an apparatus and a method for detecting the presence of pathogenic agents with sensors containing functionalized nanostructures integrated into circuits on silicon chips. The nanostructures are functionalized with molecular transducers that recognize and bind targeted analytes which are diagnostic of the pathogenic agent of interest. The molecular transducer includes a receptor portion, which binds the analyte, and an anchor portion that attaches to the nanostructure. Upon binding of the analyte, a change in molecular configuration represented by the newly formed receptor-analyte complex creates a force that is transmitted to the nanostructure via the anchor portion of the transducer. The effect of the force transmitted to the nanostructure is to alter its conductivity. The change in conductivity of the nanotube thus represents a signal that indicates the presence of the pathogenic agent of interest.
摘要:
This invention provides for an apparatus and a method for detecting the presence of pathogenic agents with sensors containing functionalized nanostructures integrated into circuits on silicon chips. The nanostructures are functionalized with molecular transducers that recognize and bind targeted analytes which are diagnostic of the pathogenic agent of interest. The molecular transducer includes a receptor portion, which binds the analyte, and an anchor portion that attaches to the nanostructure. Upon binding of the analyte, a change in molecular configuration represented by the newly formed receptor-analyte complex creates a force that is transmitted to the nanostructure via the anchor portion of the transducer. The effect of the force transmitted to the nanostructure is to alter its conductivity. The change in conductivity of the nanotube thus represents a signal that indicates the presence of the pathogenic agent of interest.
摘要:
A nanostructure sensing device includes a substrate, a nanotube disposed over the substrate, and at least two conductive elements electrically connected to the nanotube. A electric current on the order of about 10 μA, or greater, is passed through the conductive elements and the nanotube. As a result, the nanotube heats up relative to the substrate. In the alternative, some other method may be used to heat the nanotube. When operated as a sensor with a heated nanotube, the sensor's response and/or recovery time may be markedly improved.
摘要:
According to the invention, nanostructured storage materials are provided for storing hydrogen. The nanostructured storage materials can include a network of light elements, such as Be, B, C, N, O, F, Mg, P, S, and Cl, coupled with sp2 bonds. The hydrogen adsorption to the nanostructured storage material is improved by modifying the sp2 bonds. The sp2 bonds can be modified by forming the nanostructured storage material from the above light elements, possibly with a shape other than a planar layer, and by introducing defects. A chemical vapor deposition technique can be used for the synthesis, where doping gases are included into the flow. Methods for forming the nanostructured storage material with defects include removing light elements from the nanostructured storage material by irradiation with electrons, neutrons, ions, gamma rays, X-rays, and microwaves.
摘要翻译:根据本发明,提供用于储存氢的纳米结构储存材料。 纳米结构的储存材料可以包括与Sp 2键结合的诸如Be,B,C,N,O,F,Mg,P,S和Cl的光元件网络。 对纳米结构储存材料的氢吸附通过改变sp 2 O 2键来改善。 可以通过从上述光元件形成纳米结构的储存材料,可能具有不同于平面层的形状,并且通过引入缺陷来修饰sp 2 O 2键。 化学气相沉积技术可以用于合成,其中掺杂气体被包括在流中。 用于形成具有缺陷的纳米结构存储材料的方法包括通过用电子,中子,离子,γ射线,X射线和微波照射从纳米结构的储存材料中去除光元件。
摘要:
An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifiying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided. The methods involve comparing signals from nanostructure sensing devices that have not been exposed to the chemical species of interest with signals from nanostructure sensing devices that have been exposed to the chemical species of interest. Nanostructure sensing device array structures that can measure and subtract out environmental factors are also disclosed.
摘要:
Nanostructure sensing devices for detecting an analyte are described. The devices include nanostructures connected to conductive elements, all on a substrate. Contact regions adjacent to points of contact between the nanostructures and the conductive elements are given special treatment. The proportion of nanostructure surface area within contact regions can be maximized to effect sensing at very low analyte concentrations. The contact regions can be passivated in an effort to prevent interaction between the environment and the contact regions for sensing at higher analyte concentrations and for reducing cross-sensing. Both contact regions and at least some portion of the nanostructures can be covered with a material that is at least partially permeable to the analyte of interest and impermeable to some other species to tune selectivity and sensitivity of the nanostructure sensing device.
摘要:
A nanotube device is configured as an electronic sensor for a target DNA sequence. A film of nanotubes is deposited over electrodes on a substrate. A solution of single-strand DNA is prepared so as to be complementary to a target DNA sequence. The DNA solution is deposited over the electrodes, dried, and removed from the substrate except in a region between the electrodes. The resulting structure includes strands of the desired DNA sequence in direct contact with nanotubes between opposing electrodes, to form a sensor that is electrically responsive to the presence of target DNA strands. Alternative assay embodiments are described which employ linker groups to attach ssDNA probes to the nanotube sensor device.
摘要:
This invention provides for an apparatus and a method for operation of a cryogenic hydrogen storage system that contains a porous medium configured to adsorb hydrogen. The hydrogen storage and supply system includes a hydrogen source apparatus and a cryosorptive storage apparatus. Methods and devices that allow for an energy efficient filling of the cryosorptive apparatus from the hydrogen source apparatus are described. The cryosorptive hydrogen storage apparatus is filled with cold, pressurized hydrogen. During the course of filling, heat is generated in the cryosorptive storage device by the process of hydrogen adsorption on to the host medium. Methods and devices are provided for the removal the generated heat and the warm hydrogen. Further provided are devices and methods for the capture and recycle of escaped hydrogen within the hydrogen source apparatus.
摘要:
This invention provides for an apparatus and a method for operation of a cryogenic hydrogen storage system that contains a porous medium configured to adsorb hydrogen. The hydrogen storage and supply system includes a hydrogen source apparatus and a cryosorptive storage apparatus. Methods and devices that allow for an energy efficient filling of the cryosorptive apparatus from the hydrogen source apparatus are described. The cryosorptive hydrogen storage apparatus is filled with cold, pressurized hydrogen. During the course of filling, heat is generated in the cryosorptive storage device by the process of hydrogen adsorption on to the host medium. Methods and devices are provided for the removal the generated heat and the warm hydrogen. Further provided are devices and methods for the capture and recycle of escaped hydrogen within the hydrogen source apparatus.
摘要:
A nanoelectronic device is combined with a cellular membrane component to provide a sensor for biomolecules or to provide information about the structure of the membrane. The nanoelectronic device may comprise a network of randomly-oriented nanotubes, or other nanostructure, arranged on a substrate with adjacent electrodes so as to operate as a field-effect transistor sensor or as a capacitive sensor. A cellular membrane is disposed over the nanostructure element.