摘要:
Method for producing solar cells with a two-stage doping (9, 11) comprising the method steps of heavy doping (50) of at least a part of the solar cell substrate (1), of at least temporarily protecting doped areas (8), in which heavily doped areas (9) of the two-stage doping (9, 11) should be formed, from an etching medium and etching back (54; 62, 64; 72, 74) unprotected doped areas (17) of the solar cell substrate (1) by means of the etching medium, whereby, for the purpose of protecting the doped areas, sacrificial structures (7) are applied (52) on the areas (8) to be protected, which are at least partly etched (54; 62, 64; 72, 74) during etching back (54; 62, 64; 72, 74) of the unprotected doped areas.
摘要:
The invention relates to a solar cell arrangement consisting of series-connected solar subcells. Said solar subcells consist of a semiconductor wafer which forms a common base material for all of the solar subcells and wherein a number of recesses are provided for delimiting the individual, series-connected solar subcells. The invention is characterised in that at least some of the recesses extend from the top surface of the semiconductor wafer, through the wafer itself to the bottom surface and in that at most some bridge segments are left in continuation of the recesses as far as the wafer edge, to mechanically interconnect the solar subcells.
摘要:
The present invention concerns a process for fabricating a solar cell, wherein material is deposited on a multicrystalline silicon substrate and passivation is performed by means of hydrogen plasma. It is proposed that the material be deposited by low-pressure CVD and the hydrogen passivation be effected by feeding in a hydrogen plasma induced remotely from the partially processed solar cells. A device for carrying out the process is also described.
摘要:
In a method for texturing silicon wafers for producing solar cells, the step of introducing a silicon wafer involves the use of a texturing solution which is at a temperature of at least 80 degrees Celsius and which comprises water admixed with 1 percent by weight to 6 percent by weight KOH or 2 percent by weight to 8 percent by weight NaOH and with a surfactant or a surfactant mixture constituting less than 0.01 percent by weight. Very economic texturing can be performed in this way.
摘要:
A solar cell comprising a substrate on which grooves are formed on the from and back sides thereof. The grooves on the front side are disposed in order to inscribe an angle with respect to the grooves on the back side. The intersection of the grooves on the from side and the back side form a plurality of through holes which form a grid pattern. Also disclosed is a method for producing a flat component with a grid of through holes (7). To produce the through holes (7), a plurality of generally equidistant, parallel V-shaped grooves (8) are formed on the from and back sides of a wafer. The grooves (8) on the two sides inscribe an angle relative to one another and are sufficiently deep for the through holes (7) to be automatically created at the intersections of grooves (8). The method is suitable for producing high efficiency solar cells.
摘要:
An etching solution contains water, nitric acid, hydrofluoric acid, and sulphuric acid. More specifically it contains 15 to 40% by weight of nitric acid, 10 to 41% by weight of sulphuric acid and 0.8 to 2.0% by weight of hydrofluoric acid. The etching solution is used for etching silicon and to etching methods for silicon wafers.
摘要:
In a method for texturing silicon wafers for producing solar cells, the step of introducing a silicon wafer involves the use of a texturing solution which is at a temperature of at least 80 degrees Celsius and which comprises water admixed with 1 percent by weight to 6 percent by weight KOH or 2 percent by weight to 8 percent by weight NaOH and with a surfactant or a surfactant mixture constituting less than 0.01 percent by weight. Very economic texturing can be performed in this way.
摘要:
A method for producing a semiconductor component, in particular a solar cell, having regions which are doped to different extents. A layer is formed which inhibits the diffusion of a dopant and can be penetrated by a dopant, on at least one part of the surface of a semiconductor component material. The diffusion-inhibiting layer is at least partially removed in at least one high-doping region. A dopant source is formed on the diffusion-inhibiting layer and in the at least one high-doping region. Then the dopant is diffused from the dopant source into the semiconductor component material. The semiconductor component is suitable for use in integrated circuits, electronic circuits, solar cell modules, and to produce solar cells having a selective emitter structure.
摘要:
The problem posed by both conventional and novel crystalline silicon solar cells is the electrical isolation of layers doped with p and n conductivity types. The invention solves said problem in a simple and elegant manner. A masking paste is applied locally to at least one side of the silicon substrate and is subsequently dried. A doping material diffusion is then carried out, whereby the conductivity type of the doping material is in opposition to that of the base doping of the crystalline silicon substrate. In one of the subsequent production steps of the solar cell, the electric contacts are applied in such a way that at least one section of said contacts is isolated electrically from the rest of the contact by the masking paste. The masking paste thus allows an electrical isolation of the two external contacts of a solar cell by preventing the diffusion of one doping material using said paste. Other methods that achieve the same results are substantially more complex and expensive to use.
摘要:
An exemplary method of production of solar grade silicon is disclosed. The method comprises melting the silicon and directionally solidifying the melt. The method additionally comprises forming a crystallization front during the directional solidification, the front having the shape of at least a section of a spherical surface. Also disclosed are a silicon wafer and a solar cell in accordance with an exemplary embodiment of the present invention.