摘要:
This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.
摘要:
This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.
摘要:
This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.
摘要:
In a process for isomerizing a feed comprising ethylbenzene and a mixture of xylene isomers, the feed is first contacted under xylene isomerization conditions with a first catalyst composition to produce an intermediate product having a higher para-xylene concentration than the feed, and then the intermediate product is contacted under ethylbenzene isomerization conditions with a second catalyst composition. The second catalyst composition comprises a hydrogenation-dehydrogenation component and a molecular sieve having 10-membered ring pores and is effective to selectively isomerize at least part of the ethylbenzene in the intermediate product to para-xylene and thereby produce a further product having a para-xylene concentration greater than the equilibrium concentration of para-xylene at said ethylbenzene isomerization conditions.
摘要:
There is provided a process for converting hydrocarbons using a catalyst comprising macrostructures having a three-dimensional network of particles comprised of porous inorganic material. The particles of the macrostructures occupy less than 75% of the total volume of the macrostructures and are joined together to form a three-dimensional interconnected network comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.
摘要:
There is provided a catalyst containing porous macrostructures comprised of: (a) a three-dimensional network of particles of porous inorganic material (e.g., zeolites); and, (b) at least one metal (e.g., a catalytically active metal). The particles of the at least one macrostructure occupy less than 75% of the total volume of the at least one macrostructure and are jointed together to form a three-dimensional interconnected network. The three-dimensional interconnected network will usually be comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger (e.g., a polymer-based ion exchange resin) and a synthesis mixture (e.g., for zeolite formation) capable of forming the porous inorganic material and the at least one metal; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material. The metal-containing macrostructures find application in hydrocarbon conversion (e.g., hydrogenation, dehydrogenation, dehydrocyclization, isomerization, hydrocracking, dewaxing, reforming, conversion of alkyl aromatics, etc.) and in the reduction of emissions of hydrocarbons, carbon monoxide, and/or oxides of nitrogen from an internal combustion engine.
摘要:
There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
摘要:
There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
摘要:
A process is disclosed for selectively producing one or more aromatic compounds selected from benzene, toluene, para-xylene, meta-xylene, ortho-xylene, ethylbenzene and mixtures thereof from a feed containing C6–C20 hydrocarbons and/or C6–C8 alcohols. The feed is initially subjected to a chemical conversion step to increase the concentration of C6–C8 paraffin and/or olefin precursors of said one or more aromatic compounds and then resulting precursor-enriched feed is then contacted with a dehydrocyclization catalyst under conditions of temperature and hydrogen partial pressure sufficient to effect dehydrocyclization of said paraffin and/or olefin precursors. A product rich in the desired aromatic compound(s) can then be recovered from the dehydrocyclization effluent.
摘要:
There is provided a process for converting hydrocarbons using a catalyst comprising macrostructures having a three-dimensional network of particles comprised of porous inorganic material. The particles of the macrostructures occupy less than 75% of the total volume of the macrostructures and are joined together to form a three-dimensional interconnected network comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.