摘要:
According to example embodiments of inventive concepts, a semiconductor device includes: a substrate, and a stacked structure including interlayer insulating layers and gate electrodes alternately stacked on the substrate. The stacked structure defines a through-hole over the substrate. The gate electrodes each include a first portion between the through-hole and a second portion of the gate electrodes. A channel pattern may be in the through-hole. A tunneling layer may surround the channel pattern. A charge trap layer may surround the tunneling layer, and protective patterns may surround the first portions of the gate electrodes. The protective patterns may be between the first portions of the gate electrodes and the charge trap layer.
摘要:
A vertical memory device includes a substrate, a channel, gate lines and a connecting portion. A plurality of the channels extend in a first direction which is vertical to a top surface of a substrate. A plurality of the gate lines are stacked in the first direction to be spaced apart from each other and extend in a second, lengthwise direction, each gate line intersecting a set of channels and surrounding outer sidewalls of each channel of the set of channels. The gate lines forms a stepped structure which includes a plurality of vertical levels. A connecting portion connects a group of gate lines of the plurality of gate lines located at the same vertical level, the connecting portion diverging from the second direction in which the gate lines of the group of gate lines extend.
摘要:
Disclosed are vertical memory devices and methods of manufacturing the same. The vertical memory device may include includes a substrate, a gate stack structure and channel structure on the substrate, and a charge trap structure between the gate stack structure and the channel structure. The gate stack structure includes conductive structures and insulation interlayer structures that are alternately stacked on each other in a vertical direction on the substrate such that cell regions and inter-cell regions are alternately arranged in the vertical direction. The channel structure penetrates through the gate stack structure in the vertical direction. The charge trap structure and the conductive structures define memory cells at the cell regions. The charge structure is configured to selectively store charges. The charge trap structure includes an anti-coupling structure in the inter-cell region for reducing a coupling between neighboring memory cells adjacent to each other in the vertical direction.
摘要:
A method of forming a semiconductor device, where the method may include forming a first trench in a semiconductor substrate, forming first device isolation patterns that fill the first trench, forming spacers on sidewalls of the first device isolation patterns, forming a second trench in the semiconductor substrate between first device isolation patterns, and forming second device isolation patterns that fill the second trench. The second trench is formed using an etching process adopting the first device isolation pattern and the spacer as a mask.
摘要:
Methods of forming an integrated circuit device include forming first and second device isolation regions at side-by-side locations within a semiconductor substrate to thereby define a semiconductor active region therebetween. These first and second device isolation regions have sidewalls that extend vertically relative to the semiconductor active region. A first gate insulating layer is formed on a surface of the semiconductor active region. A central portion of the first gate insulating layer extending opposite the semiconductor active region is thinned to thereby define gate insulating residues extending adjacent sidewalls of the first and second device isolation regions. A second gate insulating layer is formed on the gate insulating residues to thereby yield a non-uniformly thick third gate insulating layer. A gate electrode is formed on the non-uniformly thick third gate insulating layer.
摘要:
A method of fabricating a flash memory device produces a device that has a small cell area and yet a high coupling ratio. First, a basic structure is provided that includes a substrate, a field isolation film protruding from the substrate, and floating gates disposed on the substrate on opposite sides of the floating gate. A first etch process is performed to remove a portion of the field isolation film and thereby expose upper portions of the floating gates. Then, a second etch process is performed to knock off the edges of the floating gates. Thus, a large amount of space is secured between the floating gates for a dielectric film and a control gate.
摘要:
A method of forming a semiconductor device, where the method may include forming a first trench in a semiconductor substrate, forming first device isolation patterns that fill the first trench, forming spacers on sidewalls of the first device isolation patterns, forming a second trench in the semiconductor substrate between first device isolation patterns, and forming second device isolation patterns that fill the second trench. The second trench is formed using an etching process adopting the first device isolation pattern and the spacer as a mask.
摘要:
A method of fabricating a flash memory device produces a device that has a small cell area and yet a high coupling ratio. First, a basic structure is provided that includes a substrate, a field isolation film protruding from the substrate, and floating gates disposed on the substrate on opposite sides of the floating gate. A first etch process is performed to remove a portion of the field isolation film and thereby expose upper portions of the floating gates. Then, a second etch process is performed to knock off the edges of the floating gates. Thus, a large amount of space is secured between the floating gates for a dielectric film and a control gate.
摘要:
A shallow trench isolation type semiconductor device includes a gate insulating layer formed in a first region and in a second region. The gate insulating layer is of greater thickness in the first region, relative to the thickness of the gate insulating layer in the second region. A shallow trench isolation layer is also formed in the first region and the second region, the shallow trench isolation layer in the first region being thinner than shallow trench isolation layer in the second region.
摘要:
Disclosed are vertical memory devices and methods of manufacturing the same. The vertical memory device may include includes a substrate, a gate stack structure and channel structure on the substrate, and a charge trap structure between the gate stack structure and the channel structure. The gate stack structure includes conductive structures and insulation interlayer structures that are alternately stacked on each other in a vertical direction on the substrate such that cell regions and inter-cell regions are alternately arranged in the vertical direction. The channel structure penetrates through the gate stack structure in the vertical direction. The charge trap structure and the conductive structures define memory cells at the cell regions. The charge structure is configured to selectively store charges. The charge trap structure includes an anti-coupling structure in the inter-cell region for reducing a coupling between neighboring memory cells adjacent to each other in the vertical direction.