摘要:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises: a semiconductor substrate; a rare earth oxide layer formed on the semiconductor substrate; a channel region formed on the rare earth oxide layer; and a source region and a drain region formed at both sides of the channel region respectively, in which a relationship between a lattice constant a of the rare earth oxide layer and a lattice constant b of a semiconductor material of the channel region and/or the source region and the drain region is a=(n±c)b, where n is an integer, c is a mismatch ratio of lattice constants, and 0
摘要:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises: a semiconductor substrate; a source region and a drain region defined in the semiconductor substrate respectively, and a trench formed in the source region and/or the drain region, in which a rare earth oxide layer is formed in the trench; a source and/or a drain formed on the rare earth oxide layer; and a channel region formed between the source and the drain. A relationship between a lattice constant a of the rare earth oxide layer and a lattice constant b of a semiconductor material of the source and/or the drain and/or the channel region is a=(n±c)b, where n is an integer, c is a mismatch ratio of lattice constants, and 0
摘要:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises: a semiconductor substrate; an active region formed in the semiconductor substrate, in which the active region comprises: a channel region, and a source region and a drain region formed on both sides of the channel region respectively; and a first isolation trench formed in the semiconductor substrate and on both sides of the active region, in which a first rare earth oxide layer is formed in each first isolation trench to produce a stress in the channel region in a channel length direction.
摘要:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises: a semiconductor substrate; a trench formed in the semiconductor substrate, in which a rare earth oxide layer is formed in the trench; a channel region partly or entirely formed on the rare earth oxide layer; and a source region and a drain region formed at both sides of the channel region, respectively. A relationship between a lattice constant a of the rare earth oxide layer and a lattice constant b of a semiconductor material of the channel region and/or the source region and the drain region is a=(n±c)b, where n is an integer, c is a mismatch ratio of lattice constants, and 0
摘要:
A low Schottky barrier semiconductor structure is provided, comprising: a substrate; a SiGe layer with low Ge content formed on the substrate; a channel layer with high Ge content formed on the SiGe layer; a gate stack formed on the substrate and a side wall of one or more layers formed on both sides of the gate stack; a metal source and a metal drain formed in the channel layer and on the both sides of the gate stack respectively; and an insulation layer formed between the substrate and the metal source and between the substrate and the metal drain respectively.
摘要:
A semiconductor structure with a rare earth oxide is provided. The semiconductor structure comprises: a semiconductor substrate (100); and a plurality of insulation oxide layers (201, 202 . . . 20x) and a plurality of single crystal semiconductor layers (301, 302 . . . 30x) alternately stacked on the semiconductor substrate (100). A material of the insulation oxide layer (201) contacted with the semiconductor substrate (100) is any one of a rare earth oxide, SiO2, SiOxNy and a combination thereof, a material of other insulation oxide layers (202 . . . 20x) is a single crystal rare earth oxide.
摘要翻译:提供了具有稀土氧化物的半导体结构。 半导体结构包括:半导体衬底(100); 以及交替层叠在半导体基板(100)上的多个绝缘氧化物层(201,202,20.0x)和多个单晶半导体层(301,302,30 ...)。 与半导体衬底(100)接触的绝缘氧化物层(201)的材料是稀土氧化物,SiO 2,SiO x N y及其组合中的任一种,其它绝缘氧化物层(202.0×20×)的材料为 单晶稀土氧化物。
摘要:
A Si—Ge—Si semiconductor structure having double compositionally-graded hetero-structures is provided, comprising: a substrate; a buffer layer or an insulation layer formed on the substrate; a strained SiGe layer formed on the buffer layer or the insulation layer, wherein a Ge content in a central portion of the strained SiGe layer is higher than the Ge content in an upper surface or in a lower surface of the strained SiGe layer, and the Ge content presents a compositionally-graded distribution from the central portion to the upper surface and to the lower surface respectively. According to the present disclosure, a compositionally-graded hetero-structure replaces an abrupt hetero-structure so as to form a triangular hole carrier potential well, so that most of hole carriers may be distributed in the strained SiGe layer with high Ge content and a reduction of the carrier mobility caused by interface scattering may be avoided, thus further improving a performance of a device.
摘要:
A semiconductor structure is provided. The semiconductor structure may include a substrate (100); a buffer layer or an insulation layer (200) formed on the substrate; a first strained wide bandgap semiconductor material layer (400) formed on the buffer layer or the insulation layer; a strained narrow bandgap semiconductor material layer (500) formed on the first strained wide bandgap semiconductor material layer; a second strained wide bandgap semiconductor material layer (700) formed on the strained narrow bandgap semiconductor material layer; a gate stack (300) formed on the second strained wide bandgap semiconductor material layer; and a source and a drain (600) formed in the first strained wide bandgap semiconductor material layer, the strained narrow bandgap semiconductor material layer and the second strained wide bandgap semiconductor material layer respectively.
摘要:
A strained Ge-on-insulator structure is provided, comprising: a silicon substrate, in which an oxide insulating layer is formed on a surface of the silicon substrate; a Ge layer formed on the oxide insulating layer, in which a first passivation layer is formed between the Ge layer and the oxide insulating layer; a gate stack formed on the Ge layer, a channel region formed below the gate stack, and a source and a drain formed on sides of the channel region; and a plurality of shallow trench isolation structures extending into the silicon substrate and filled with an insulating dielectric material to produce a strain in the channel region. Further, a method for forming the strained Ge-on-insulator structure is also provided.
摘要:
A method for forming a Ge-on-insulator structure is provided, comprising steps of: forming a Ge layer (1200) on a substrate (2000); treating a first surface of the Ge layer (1200) to form a first semiconducting metal-germanide passivation layer (1300); bonding the first semiconducting metal-germanide passivation layer (1300) with a silicon substrate (1100), wherein on a surface of the silicon substrate (1100) an oxide insulating layer is formed; and removing the substrate (2000). Further, a Ge-on-insulator structure formed by the method is also provided.