摘要:
A plasma etch reactor comprising a remote source of plasma mounted on a vacuum processing chamber has a large permanent magnet ring around the area of the chamber where the plasma enters, magnetically oriented so that magnetic field lines are removed from said plasma in the processing chamber, and two or more pairs of magnet rings mounted around said chamber to form a series of magnetic cusps about the wall of said chamber, to thereby inhibit plasma electrons from striking the wall of said chamber. A substrate entry port can be fitted between the magnet rings, allowing automatic ingress and egress of said substrates with maximum efficiency.
摘要:
Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
摘要:
A system and method for planarizing a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple of features in the pattern. The conductive interconnect material having an overburden portion. The overburden portion having a localized non-uniformity. A bulk portion of the overburden portion is removed to planarize the overburden portion. The substantially locally planarized overburden portion is mapped to determine a global non-uniformity. The substantially locally planarized overburden portion is etched to substantially remove the global non-uniformity.
摘要:
Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
摘要:
Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
摘要:
In a plasma processing chamber, a method for etching through a selected portion of an oxide layer of a wafer's layer stack to create a self-aligned contact opening is described. The wafer stack includes a substrate, a polysilicon layer disposed above the substrate, a nitride layer disposed above said polysilicon layer and the oxide layer disposed above the nitride layer. The method for etching includes etching through the oxide layer of the layer stack with a chemistry and a set of process parameters. The chemistry essentially includes C.sub.2 HF.sub.5 and CH.sub.2 F.sub.2 and the set of process parameters facilitate etching through the oxide layer without creating a spiked etch and etching the oxide layer through to the substrate without substantially damaging the nitride layer.
摘要翻译:在等离子体处理室中,描述了通过晶片层叠层的氧化物层的选定部分蚀刻以形成自对准接触开口的方法。 晶片堆叠包括基板,设置在基板上方的多晶硅层,设置在所述多晶硅层上方的氮化物层和设置在氮化物层上方的氧化物层。 蚀刻方法包括通过化学和一组工艺参数蚀刻通过层叠层的氧化物层。 化学性质基本上包括C 2 H 5 O 5和CH 2 F 2,并且一组工艺参数有助于蚀刻通过氧化物层而不产生加标蚀刻,并将氧化物层蚀刻到衬底上而不会基本上损坏氮化物层。
摘要:
A system and method for planarizing a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple of features in the pattern. The conductive interconnect material having an overburden portion. The overburden portion includes a localized non-uniformity. An additional layer is formed on the overburden portion. The additional layer and the overburden portion are planarized. The planarizing process substantially entirely removes the additional layer.
摘要:
The invention relates to a plasma processing reactor for processing a substrate. The plasma processing reactor includes a process chamber. The plasma processing reactor further includes an inductive coil configured to be coupled to a RF power source having a RF frequency wherein the inductive coil generates an electric field inside of the process chamber. The plasma processing reactor additionally includes a magnetic field producing device configured to produce a magnetic field inside the process chamber in proximity of the electric field.
摘要:
Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
摘要:
Processes for treating a morphologically-modified surface of a silicon upper electrode of a plasma processing chamber include exposing the surface to a gas composition containing at least one gas-phase halogen fluoride. The gas composition is effective to remove silicon from the morphologically-modified surface and restore the surface state.