摘要:
In a luminescence diode chip having a radiation exit area (1) and a contact structure (2, 3, 4) which is arranged on the radiation exit area (1) and comprises a bonding pad (4) and a plurality of contact webs (2, 3) which are provided for current expansion and are electrically conductively connected to the bonding pad (4), the bonding pad (4) is arranged in an edge region of the radiation exit area (1). The luminescence diode chip has reduced absorption of the emitted radiation (23) in the contact structure (2, 3, 4).
摘要:
A thin-film LED comprising an active layer (7) made of a nitride compound semiconductor, which emits electromagnetic radiation (19) in a main radiation direction (15). A current expansion layer (9) is disposed downstream of the active layer (7) in the main radiation direction (15) and is made of a first nitride compound semiconductor material. The radiation emitted in the main radiation direction (15) is coupled out through a main area (14), and a first contact layer (11, 12, 13) is arranged on the main area (14). The transverse conductivity of the current expansion layer (9) is increased by formation of a two-dimensional electron gas or hole gas. The two-dimensional electron gas or hole gas is advantageously formed by embedding at least one layer (10) made of a second nitride compound semiconductor material in the current expansion layer (9).
摘要:
A light-emitting chip (3) has a lens-type coupling-out window (4), whose base area (5) is provided with a mirror area (6). Arranged on a coupling-out area (7) of the coupling-out window (4) is a layer sequence (9), with a photon-emitting pn junction (10). The photons emitted by the pn junction are reflected at the mirror area (6) and can leave the coupling-out window (4) through the coupling-out area (7).
摘要:
A thin-film LED comprising an active layer (7) made of a nitride compound semiconductor, which emits electromagnetic radiation (19) in a main radiation direction (15). A current expansion layer (9) is disposed downstream of the active layer (7) in the main radiation direction (15) and is made of a first nitride compound semiconductor material. The radiation emitted in the main radiation direction (15) is coupled out through a main area (14), and a first contact layer (11, 12, 13) is arranged on the main area (14). The transverse conductivity of the current expansion layer (9) is increased by formation of a two-dimensional electron gas or hole gas. The two-dimensional electron gas or hole gas is advantageously formed by embedding at least one layer (10) made of a second nitride compound semiconductor material in the current expansion layer (9).
摘要:
In a luminescence diode chip having a radiation exit area (1) and a contact structure (2, 3, 4) which is arranged on the radiation exit area (1) and comprises a bonding pad (4) and a plurality of contact webs (2, 3) which are provided for current expansion and are electrically conductively connected to the bonding pad (4), the bonding pad (4) is arranged in an edge region of the radiation exit area (1). The luminescence diode chip has reduced absorption of the emitted radiation (23) in the contact structure (2, 3, 4).
摘要:
A method for producing an optoelectronic component is disclosed. The method includes the steps of providing a substrate, applying a semiconductor layer sequence to the substrate, applying at least two current expansion layers to the semiconductor layer sequence, applying and patterning a mask layer, patterning the second current expansion layer by means of an etching process during which sidewalls of the mask layer are undercut, patterning the first current expansion layer by means of an etching process during which the sidewalls of the mask layer are undercut at least to a lesser extent than during the patterning of the second current expansion layer, and removing the mask layer.
摘要:
An optoelectronic component having a semiconductor chip containing a semiconductor layer sequence (6) with a radiation-emitting active zone (4), the semiconductor layer sequence (6) having sidewalls (10). A connection contact (9) is provided for impressing current into the active zone. A first current expansion layer (7) adjoins a semiconductor layer (5) of the semiconductor layer sequence (6) and a second current expansion layer (8) is provided between the semiconductor layer sequence (6) and the connection contact (9). The first current expansion layer (7) has a larger sheet resistance than the second current expansion layer (8) and forms an ohmic contact with the adjoining semiconductor layer (5). The second current expansion layer (8) is applied to a partial region of the first current expansion layer (7) which is at a distance from the sidewalls (10).
摘要:
A method for producing an optoelectronic component is disclosed. The method includes the steps of providing a substrate, applying a semiconductor layer sequence to the substrate, applying at least two current expansion layers to the semiconductor layer sequence, applying and patterning a mask layer, patterning the second current expansion layer by means of an etching process during which sidewalls of the mask layer are undercut, patterning the first current expansion layer by means of an etching process during which the sidewalls of the mask layer are undercut at least to a lesser extent than during the patterning of the second current expansion layer, and removing the mask layer.
摘要:
An optoelectronic component having a semiconductor chip containing a semiconductor layer sequence (6) with a radiation-emitting active zone (4), the semiconductor layer sequence (6) having sidewalls (10). A connection contact (9) is provided for impressing current into the active zone. A first current expansion layer (7) adjoins a semiconductor layer (5) of the semiconductor layer sequence (6) and a second current expansion layer (8) is provided between the semiconductor layer sequence (6) and the connection contact (9). The first current expansion layer (7) has a larger sheet resistance than the second current expansion layer (8) and forms an ohmic contact with the adjoining semiconductor layer (5). The second current expansion layer (8) is applied to a partial region of the first current expansion layer (7) which is at a distance from the sidewalls (10).
摘要:
The invention relates to a method for the thermal treatment of a surface layer (4) on a semiconductor substrate (5). Laser pulses (2) generated by a laser (1) are emitted onto the surface layer (4). This method can be used to produce, in particular, ohmic contacts to III-V compound semiconductors.