摘要:
In some embodiments, a composition comprises a bisphenol-A polycarbonate, wherein a molded article of the bisphenol-A polycarbonate has transmission level greater than or equal to 90.0% at 2.5 mm thickness as measured by ASTM D1003-00 and a yellow index (YI) less than or equal to 1.5 as measured by ASTM D1925. In some embodiments, light emitting device comprises: a lighting element located in a housing. The housing is formed from a plastic composition comprising: the polycarbonate composition and a conversion material. After the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10−4 seconds when the excitation source is removed.
摘要:
In some embodiments, a composition comprises a bisphenol-A polycarbonate, wherein a molded article of the composition has transmission level greater than or equal to 90.0% at 2.5 mm thickness as measured by ASTM D1003-00 and a yellow index (YI) less than or equal to 1.5 as measured by ASTM D1925.
摘要:
In some embodiments, a composition comprises a bisphenol-A polycarbonate, wherein a molded article of the composition has transmission level greater than or equal to 90.0% at 2.5 mm thickness as measured by ASTM D1003-00 and a yellow index (YI) less than or equal to 1.5 as measured by ASTM D1925.
摘要:
In one embodiment, a process for producing a bisphenol A product comprises: reacting phenol with acetone in the presence of a sulfur containing promoter to obtain a reaction mixture comprising bisphenol A, phenol, and the promoter; after reacting the phenol with the acetone, cooling to form a crystal stream comprising crystals of bisphenol A and phenol; separating the crystals from the crystal steam; melting the crystals to form a molten stream of bisphenol A, phenol, and sulfur; contacting the molten stream with a base to reduce a sulfur concentration in the molten stream and form a reduced sulfur stream; and removing phenol from the reduced sulfur stream to form a bisphenol A product.
摘要:
In one embodiment, a process for producing a bisphenol A product comprises: reacting phenol with acetone in the presence of a sulfur containing promoter to obtain a reaction mixture comprising bisphenol A, phenol, and the promoter; after reacting the phenol with the acetone, cooling to form a crystal stream comprising crystals of bisphenol A and phenol; separating the crystals from the crystal steam; melting the crystals to form a molten stream of bisphenol A, phenol, and sulfur; contacting the molten stream with a base to reduce a sulfur concentration in the molten stream and form a reduced sulfur stream; and removing phenol from the reduced sulfur stream to form a bisphenol A product. Also disclosed herein is a container comprising: a polycarbonate formed from a bisphenol A having a sulfur concentration of 0.5 to 15 ppm based upon the weight of the bisphenol A.
摘要:
In one embodiment, a process for producing a bisphenol A product comprises: reacting phenol with acetone in the presence of a sulfur containing promoter to obtain a reaction mixture comprising bisphenol A, phenol, and the promoter; after reacting the phenol with the acetone, cooling to form a crystal stream comprising crystals of bisphenol A and phenol; separating the crystals from the crystal steam; melting the crystals to form a molten stream of bisphenol A, phenol, and sulfur; contacting the molten stream with a base to reduce a sulfur concentration in the molten stream and form a reduced sulfur stream; and removing phenol from the reduced sulfur stream to form a bisphenol A product. Also disclosed herein is a container comprising: a polycarbonate formed from a bisphenol A having a sulfur concentration of 0.5 to 15 ppm based upon the weight of the bisphenol A.
摘要:
A method for forming a monomeric carbonate includes the step of combining a monofunctional alcohol or a difunctional diol with an ester-substituted diaryl carbonate to form a reaction mixture. Similarly, a method for forming a monomeric ester includes the step of combining a monofunctional carboxylic acid or ester with an ester-substituted diaryl carbonate to form a reaction mixture. These methods further include the step of allowing the reaction mixtures to react to form a monomeric carbonate or a monomeric ester, respectively.
摘要:
The present invention provides methods of forming carbamates, ureas, and isocyanates. In certain embodiments these methods include the step of reacting an amine with an ester-substituted diaryl carbonate to form an activated carbamate which can be further derivatized to form non-activated carbamate or a urea. The urea or carbamate can be subjected to a pyrolysis reaction to form isocyanate.
摘要:
The present invention provides methods of forming carbamates, ureas, and isocyanates. In certain embodiments these methods include the step of reacting an amine with an ester-substituted diaryl carbonate to form an activated carbamate which can be further derivitized to form non-activated carbamate or a urea. The urea or carbamate can be subjected to a pyrolysis reaction to form isocyanate.
摘要:
The present invention provides methods of forming carbamates, ureas, and isocyanates. In certain embodiments these methods include the step of reacting an amine with an ester-substituted diaryl carbonate to form an activated carbamate which can be further derivitized to form non-activated carbamate or a urea. The urea or carbamate can be subjected to a pyrolysis reaction to form isocyanate.