摘要:
In a low-power signaling system, an integrated circuit device includes an open loop-clock distribution circuit and a transmit circuit that cooperate to enable high-speed transmission of information-bearing symbols unaccompanied by source-synchronous timing references. The open-loop clock distribution circuit generates a transmit clock signal in response to an externally-supplied clock signal, and the transmit circuit outputs a sequence of symbols onto an external signal line in response to transitions of the transmit clock signal. Each of the symbols is valid at the output of the transmit circuit for a symbol time and a phase offset between the transmit clock signal and the externally-supplied clock signal is permitted to drift by at least the symbol time.
摘要:
In a low-power signaling system, an integrated circuit device includes an open loop-clock distribution circuit and a transmit circuit that cooperate to enable high-speed transmission of information-bearing symbols unaccompanied by source-synchronous timing references. The open-loop clock distribution circuit generates a transmit clock signal in response to an externally-supplied clock signal, and the transmit circuit outputs a sequence of symbols onto an external signal line in response to transitions of the transmit clock signal. Each of the symbols is valid at the output of the transmit circuit for a symbol time and a phase offset between the transmit clock signal and the externally-supplied clock signal is permitted to drift by at least the symbol time.
摘要:
In a low-power signaling system, an integrated circuit device includes an open loop-clock distribution circuit and a transmit circuit that cooperate to enable high-speed transmission of information-bearing symbols unaccompanied by source-synchronous timing references. The open-loop clock distribution circuit generates a transmit clock signal in response to an externally-supplied clock signal, and the transmit circuit outputs a sequence of symbols onto an external signal line in response to transitions of the transmit clock signal. Each of the symbols is valid at the output of the transmit circuit for a symbol time and a phase offset between the transmit clock signal and the externally-supplied clock signal is permitted to drift by at least the symbol time.
摘要:
A communication IC includes a power-efficient clock-distribution system. A control loop monitors and adjusts the peak and trough voltages of a clock signal. The clock signal can be adaptively adjusted to center the peak and trough voltages about the switching threshold voltage of a clock buffer. The voltage swing of the clock signal can thus be made small and, as a consequence, power efficient. The control loop can monitor and control more than one clock signal.
摘要:
In a low-power signaling system, an integrated circuit device includes an open loop-clock distribution circuit and a transmit circuit that cooperate to enable high-speed transmission of information-bearing symbols unaccompanied by source-synchronous timing references. The open-loop clock distribution circuit generates a transmit clock signal in response to an externally-supplied clock signal, and the transmit circuit outputs a sequence of symbols onto an external signal line in response to transitions of the transmit clock signal. Each of the symbols is valid at the output of the transmit circuit for a symbol time and a phase offset between the transmit clock signal and the externally-supplied clock signal is permitted to drift by at least the symbol time.
摘要:
A communication IC includes a power-efficient clock-distribution system. A control loop monitors and adjusts the peak and trough voltages of a clock signal. The clock signal can be adaptively adjusted to center the peak and trough voltages about the switching threshold voltage of a clock buffer. The voltage swing of the clock signal can thus be made small and, as a consequence, power efficient. The control loop can monitor and control more than one clock signal.
摘要:
Systems and methods are provided for edge-based loss-of-signal (LOS) detection. In a receiver, a receiver port receives a data signal. A clock and data recovery (CDR) mechanism coupled to the receive port derives one or more clock signals. An LOS signal generation mechanism generates an LOS signal based on edge glitches which occur when the receive port does not receive usable data.
摘要:
Systems and methods are provided for edge-based loss-of-signal (LOS) detection. In a receiver, a receiver port receives a data signal. A clock and data recovery (CDR) mechanism coupled to the receive port derives one or more clock signals. An LOS signal generation mechanism generates an LOS signal based on edge glitches which occur when the receive port does not receive usable data.
摘要:
Embodiments of a circuit are described. This circuit includes a receiver circuit including a first sampler (312-1) and a second” sampler (312-2). A clock-data-recovery circuit (324) in the receiver circuit adjusts a sample time of the receiver circuit so that the sample time is proximate to a signal crossing point at an edge of an eye pattern associated with received signals. An offset-calibration circuit (326) in the receiver circuit determines and adjusts an offset voltage of a given sampler, which can be the first sampler or the second sampler. This offset-calibration circuit may determine a present offset voltage (412) of the given sampler in a timing region proximate to the signal crossing point (410-2) in which the clock-data-recovery circuit dithers about a present sample time based on the present offset voltage. Additionally, the clock-data-recovery circuit and the offset-calibration circuit may iteratively converge on the signal crossing point and a residual offset voltage of the given sampler.
摘要:
Embodiments of a circuit are described. This circuit includes a receiver circuit including a first sampler (312-1) and a second” sampler (312-2). A clock-data-recovery circuit (324) in the receiver circuit adjusts a sample time of the receiver circuit so that the sample time is proximate to a signal crossing point at an edge of an eye pattern associated with received signals. An offset-calibration circuit (326) in the receiver circuit determines and adjusts an offset voltage of a given sampler, which can be the first sampler or the second sampler. This offset-calibration circuit may determine a present offset voltage (412) of the given sampler in a timing region proximate to the signal crossing point (410-2) in which the clock-data-recovery circuit dithers about a present sample time based on the present offset voltage. Additionally, the clock-data-recovery circuit and the offset-calibration circuit may iteratively converge on the signal crossing point and a residual offset voltage of the given sampler.