摘要:
The invention provides a process for improving the conversion of a hydrocarbon feedstock to light olefins comprising mixing a hydrocarbon feedstock with a diolefin to form a mixture; and thereafter contacting the mixture with a zeolite cracking catalyst. Preferably the catalyst is contacted at a reaction temperature within the range of about 500.degree. C. to about 750.degree. C. and the feedstock flows at a weight hourly space velocity in the range of about 0.1 Hr.sup.-1 WHSV to about 100 Hr.sup.-1 WHSV. The diolefin can be a straight, branched, or cyclic hydrocarbon having at least two II bonds. Preferably diolefin is a hydrocarbon of 4 to 20 carbons.
摘要:
The invention is directed to methods of shutting down reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of stopping feed to the reactor and unloading catalyst to protect against loss of catalytic activity that can occur due to contact with water molecules.
摘要:
Disclosed is a method of protecting the loss of catalytic activity of metalloaluminophosphate molecular sieve, particularly a SAPO molecular sieve, from contact with moisture. The method involves heating the metalloaluminophosphate molecular sieve so as to remove template, and provide a molecular sieve in sufficiently dry form for storage.
摘要:
The present invention is directed to a Fluid Catalytic Cracking process conducted under fluid catalytic cracking conditions by injecting into at least one reaction zone of a fluid catalytic cracking unit (FCCU) having one or more risers, a plurality of feeds wherein said plurality of feeds comprises at least one feed (.alpha.) and at least another feed (.beta.) wherein said feeds (.alpha.) and (.beta.) (a) differ in Conradson Carbon Residue by at least about 2 wt % points; or (b) differ in hydrogen content by at least about 0.2 wt %; or (c) differ in API gravities by at least about 2 points; or (d) differ in nitrogen content by at least about 50 ppm; or (e) differ in carbon-to-hydrogen ratio by at least about 0.3; or (f) differ in mean boiling point by at least about 200.degree. F; and wherein said feeds (.alpha.) and (.beta.) are alternately injected and wherein said alternate injection maintains said risers in a cyclic steady state, while the rest of the FCC unit is in a steady state.
摘要:
A process is described for converting an oxygenate-containing feedstock into one or more olefins in which the feedstock is contacted in a reaction zone with a fluidized bed of a particulate catalyst composition comprising a molecular sieve and at least one metal oxide having an uptake of carbon dioxide at 100° C. of at least 0.03 mg/m2 of the metal oxide whereby at least part of the feedstock is converted into a product stream comprising one or more olefins and a carbonaceous material is deposited on the catalyst composition to produce a coked catalyst composition. The coked catalyst composition is separated from the product stream and divided into at least first and second portions. The first portion of the coked catalyst composition is contacted with a regeneration medium in a regeneration zone under conditions to remove at least part of the carbonaceous material from the coked catalyst composition and produce a regenerated catalyst composition, which is subsequently recycled to the reaction zone. The second portion of the coked catalyst composition is also recycled to the reaction zone but without being initially contacted with a regeneration medium.
摘要翻译:描述了一种用于将含氧化合物的原料转化成一种或多种烯烃,其中原料在反应区中与包含分子筛和至少一种具有碳吸收性的金属氧化物的颗粒催化剂组合物的流化床接触的烯烃 二氧化碳在100℃下为至少0.03mg / m 2的金属氧化物,由此至少部分原料转化为包含一种或多种烯烃的产物流,并将碳质材料沉积在 用于生产焦化催化剂组合物的催化剂组合物。 将焦炭催化剂组合物与产物流分离并分成至少第一和第二部分。 焦化催化剂组合物的第一部分与再生区中的再生介质接触,在从焦炭催化剂组合物中除去至少一部分碳质材料的条件下,并产生再生催化剂组合物,随后再循环到反应区。 焦炭催化剂组合物的第二部分也被循环到反应区,但不最初与再生介质接触。
摘要:
An ion exchange method is provided for loading and uniformly distributing noble metals into a catalyst substrate comprising a zeolite to make a monofunctional, non-acidic reforming catalyst. The catalyst substrate is contacted with an aqueous loading solution comprising noble metal cations and non-noble metal cations. The loading solution is formulated such that the equivalents of non-noble metal cations remaining in the catalyst not ionically bonded to the zeolite when loading is complete is 1.2 to 6.0 times the equivalents of non-noble metal cations displaced from the zeolite when the noble metal cations ion exchange into the zeolite, and simultaneously the endpoint pH of the loading solution is between 10.0 and 11.5. The required 1.2 to 6.0 ratio is achieved when the ratio of moles of non-noble metal cations added to the loading solution to moles of noble metal added to the loading solution is between 1 and 10. The use of ion exchange method results in zeolite catalysts having reduced amounts of detrital material in the micropores of the zeolite.
摘要:
The invention relates to Fluid Catalytic Cracking (FCC) for producing liquid fuels and light olefins from liquid hydrocarbon mixtures such as petroleum fractions.
摘要:
The present invention relates to an apparatus and a process for the high-throughput, quick screening, optimization, regeneration, reduction and activation of catalysts. More specifically, the present invention is a method and apparatus to quickly screen, optimize and regenerate multiple fast deactivating catalysts while maintaining a predefined range of time-on-stream.
摘要:
Hydrocarbon or oxygenate conversion process in which a feedstock is contacted with a non zeolitic molecular sieve which has been treated to remove most, if not all, of the halogen contained in the catalyst. The halogen may be removed by one of several methods. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The hydrocarbon or oxygenate conversion processes include the conversion of oxygenates to olefins, the conversion of oxygenates and ammonia to alkylamines, the conversion of oxygenates and aromatic compounds to alkylated aromatic compounds, cracking and dewaxing.
摘要:
The invention is directed a process for regenerating deactivated reforming catalysts comprising at least one Group VIII metal on zeolite L, preferably wherein the catalysts are extruded using a binder material such as alumina or silica. The process includes: a) coke burn at severe conditions to improve the accessibility of the Group VIII catalytic metal particles by transporting them to the outside of the zeolite microchannels; b) catalytic metal redispersion by wet oxychlorination with elemental chlorine and oxygen; c) stripping with a gas stream comprising oxygen and water at low pressure to remove as much residual chlorine as possible; and d) reduction of catalytic metals with hydrogen at low pressure. The process is particularly effective for recovering activity of catalysts which have been severely deactivated.