摘要:
An integrated advanced method for forming a semiconductor device utilizes a sacrificial stress layer as part of a film stack that enables spatially selective silicide formation in the device. The low-resistance portion of the device to be silicided includes NMOS transistors and PMOS transistors. The stressed film may be a tensile or compressive nitride film. An annealing process is carried out prior to the silicide formation process. During the annealing process, the stressed nitride film preferentially remains over either the NMOS transistors or PMOS transistors, but not both, to optimize device performance. A tensile nitride film remains over the NMOS transistors but not the PMOS transistors while a compressive nitride film remains over the PMOS transistors but not the NMOS transistors, during anneal.
摘要:
An integrated advanced method for forming a semiconductor device utilizes a sacrificial stress layer as part of a film stack that enables spatially selective silicide formation in the device. The low-resistance portion of the device to be silicided includes NMOS transistors and PMOS transistors. The stressed film may be a tensile or compressive nitride film. An annealing process is carried out prior to the silicide formation process. During the annealing process, the stressed nitride film preferentially remains over either the NMOS transistors or PMOS transistors, but not both, to optimize device performance. A tensile nitride film remains over the NMOS transistors but not the PMOS transistors while a compressive nitride film remains over the PMOS transistors but not the NMOS transistors, during anneal.
摘要:
A method of manufacturing a semiconductor device is provided. A semiconductor element is formed on a substrate. The semiconductor element has at least one nickel silicide contact region, an etch stop layer formed over said element, and an insulating layer formed over said etch stop layer. A portion of the etch stop layer immediately over a selected contact region is removed using a process that does not substantially react with the contact region, to form a contact opening. The contact opening is then filled with a conductive material to form a contact.
摘要:
A plasma etch method for etching a dielectric layer and an etch stop layer to reach a metal silicide layer formed thereunder employs for etching the etch stop layer an etchant gas composition comprising a fluorine containing gas and a nitrogen containing gas, preferably with a carrier gas such as argon or helium, but without an oxygen containing gas or a carbon and oxygen containing gas. The plasma etch method is selective for the etch stop layer with respect to the metal silicide layer, thus maintaining the physical and electrical integrity of the metal silicide layer.
摘要:
A method for semiconductor device feature development using a bi-layer photoresist including providing a non-silicon containing photoresist layer over a substrate; providing a silicon containing photoresist over the non-silicon containing photoresist layer; exposing said silicon containing photoresist layer to an activating light source an exposure surface defined by an overlying pattern according to a photolithographic process; developing said silicon containing photoresist layer according to a photolithographic process to reveal a portion the non-silicon containing photoresist layer; and, dry developing said non-silicon containing photoresist layer in a plasma reactor by igniting a plasma from an ambient mixture including at least oxygen, carbon monoxide, and argon.
摘要:
A method of manufacturing a semiconductor device is provided. A nickel silicide layer (e.g., NiSi) is formed on a substrate. Next, a hydrogen plasma treatment may be performed on the silicide layer, which may induce the formation of metal/silicon hydride bonds in the silicide layer. An etch stop layer is formed over the silicide layer. A dielectric layer is formed over the etch stop layer. An opening is formed in the dielectric layer. A portion of the etch stop layer is etched away at the opening to expose at least a portion of the silicide layer therebeneath. The etch chemistry mixture used during the etching step preferably includes hydrogen gas. The change in sheet resistance for the exposed silicide layer portion at the opening after the etching step, as compared to before the etching step, is preferably not greater than about 0.10 ohms/square.
摘要:
A method of manufacturing a semiconductor device is provided comprising the steps of: (a) forming a semiconductor element on a substrate, the semiconductor element having at least one nickel silicide contact region, a first etch stop layer formed over the element and an insulating layer formed over the first etch stop layer; (b) forming an opening through the insulating layer over the contact region at least to the first etch stop layer; (c) removing a portion of the first etch stop layer contacting a selected contact region using a process that does not substantially oxidize with the contact region, to form a contact opening to the contact region; and (d) filling the contact opening with conductive material to form a contact.
摘要:
A method of manufacturing a semiconductor device is provided comprising the steps of: (a) forming a semiconductor element on a substrate, the semiconductor element having at least one nickel silicide contact region, a first etch stop layer formed over the element and an insulating layer formed over the first etch stop layer; (b) forming an opening through the insulating layer over the contact region at least to the first etch stop layer; (c) removing a portion of the first etch stop layer contacting a selected contact region using a process that does not substantially oxidize with the contact region, to form a contact opening to the contact region; and (d) filling the contact opening with conductive material to form a contact.
摘要:
A method for forming a resist protect layer on a semiconductor substrate includes the following steps. An isolation structure is formed on the semiconductor substrate. An original nitride layer having a substantial etch selectivity to the isolation structure is formed over the semiconductor substrate. A photoresist mask is formed for partially covering the original nitride layer. A wet etching is performed to remove the original nitride layer uncovered by the photoresist mask in such a way without causing substantial damage to the isolation structure. As such, the original nitride layer covered by the photoresist mask constitutes the resist protect layer.
摘要:
A semiconductor device comprises a substrate, a gate disposed on the substrate, and a source and drain formed in the substrate on both sides of the gate. The device further comprises a thin spacer having a first layer and a second layer formed on the sidewalls of the gate, wherein the first and second layers have comparable wet etch rates of at least 10 Å per minute using the same etchant.