摘要:
A DRAM cell having a bit line constituted by a semiconductor layer. The DRAM cell comprises a semiconductor substrate of a first conductivity type having a main surface, an insulating film formed on the main surface, an opening formed in the insulating film to communicate with the substrate, and a bit line formed by a semiconductor layer of a second conductivity type formed on the insulating film and that portion of the substrate which is exposed through the opening.
摘要:
For increasing pattern density of cell regions in a semiconductor memory device including an array of dynamic memory cells, the cell regions for cell transistor pairs are provided in a semiconductor substrate so as to be crossed by one desired bit line and two word lines adjacent thereto, and the patterns of cell regions have a same direction. Contacts for electrically connecting each bit line to common regions of cell transistor pairs are provided on respective bit lines every desired pitch at positions where each bit line intersects with cell regions. These contacts of adjacent bit lines are successively shifted in a bit line direction by approximately 1/2.sup.n pitch (n is natural numbers greater than or equal to 2).
摘要:
For increasing pattern density of cell regions in a semiconductor memory device including an array of dynamic memory cells, the cell regions for cell transistor pairs are provided in a semiconductor substrate so as to be crossed by one desired bit line and two word lines adjacent thereto, and the patterns of cell regions have a same direction. Contacts for electrically connecting each bit line to common regions of cell transistor pairs are provided on respective bit lines every desired pitch at positions where each bit line intersects with cell regions. These contacts of adjacent bit lines are successively shifted in a bit line direction by approximately 1/2.sup.n (n is natural numbers greater than or equal to 2) pitch.
摘要:
In one-transistor.one-capacitor type dynamic memory cell, cell capacitor with a reduced junction leakage current comprises a MOS capacitor which is provided between a semiconductor substrate and a charge storage electrode disposed at a side wall of a trench through a first insulating film, and a stacked capacitor which is provided between the charge storage electrode and a capacitor plate electrode formed on a second insulating film covering the entire surface of the charge storage electrode. The equivalent silicon dioxide thickness of the first insulating film is thicker than that of the second insulating film, and the storage capacitance of the cell capacitor is rendered by a sum of the capacitance of the MOS capacitor and the capacitance of the stacked capacitor because these capacitors are electrically connected in parallel with each other.
摘要:
A method of manufacturing a semiconductor device, in particular a contact portion of the wiring of the device. An insulating layer is formed on a semiconductor substrate, a contact hole is formed on the insulating layer by etching, and a first conductive layer having hollows is formed on the insulating layer and in the contact hole. Next, a flattening layer is formed to flatten the surface of device structure, and a part of the first conductive layer is exposed by etching the flattening layer to permit a part of the flattening layer to remain in hollows of device structure. Next, a second conductive layer is formed on the remaining flattening layer and the exposed part of the first conductive layer, and is connected to the semiconductor substrate.
摘要:
A dynamic random access memory with a stacked capacitor cell structure is disclosed which has a memory cell provided on a silicon substrate and having a MOSFET and a capacitor. An insulative layer is formed on the substrate, and a first polycrystalline silicon layer is formed on this insulative layer. These layers are simultaneously subjected to etching and define a contact hole which penetrates them to come in contact with the surface of the source. A second polycrystalline silicon layer is formed on the first polycrystalline silicon layer to uniformly cover the inner wall of the contact hole and that surface portion of the source which is exposed through the contact hole. The first and second silicon layers are simultaneously subjected to patterning to provide the lower electrode of the capacitor. After a capacitor insulation layer is formed on the second polycrystalline silicon layer, a third polycrystalline silicon layer is formed on the capacitor insulation layer so as to bury a recess of the second polycrystalline silicon layer. The third silicon layer constitutes the upper electrode of the capacitor.
摘要:
First and second wirings are formed on a first insulating film. Each of the wirings is arranged so that a conductive film, a silicon oxide film and a silicon nitride film are laminated. Thereafter, a silicon oxide insulating film is formed on the whole surface. The silicon oxide insulating film is etched so that a contact hole is formed between the first and second wirings. Since the silicon oxide film and the silicon nitride film exist on the conductive film of each wiring, the conductive film is not exposed at the time of etching. Thereafter, an insulating film is formed on a side wall of the contact hole, and the conductive film exposed through the contact hole is covered by the insulating film.
摘要:
First and second wirings are formed on a first insulating film. Each of the wirings is arranged so that a conductive film, a silicon oxide film and a silicon nitride film are laminated. Thereafter, a silicon oxide insulating film is formed on the whole surface. The silicon oxide insulating film is etched so that a contact hole is formed between the first and second wirings. Since the silicon oxide film and the silicon nitride film exist on the conductive film of each wiring, the conductive film is not exposed at the time of etching. Thereafter, an insulating film is formed on a side wall of the contact hole, and the conductive film exposed through the contact hole is covered by the insulating film.
摘要:
In a stacked capacitor cell structure of a semiconductor memory device, the MIM (metal-insulator-metal) capacitor to be used as a transfer gate comprises at least a unit stack of a first insulation film, a lower capacitor electrode, a capacitor gate insulation film, an upper capacitor electrode, another capacitor gate insulation film and an extension of the lower capacitor electrode. Thus, the surface area of the lower capacitor electrode can be enlarged without increasing the plane area exclusively occupied by memory cells. Moreover, with such a configuration, since the surface area of the lower capacitor electrode can be augmented without increasing the film thickness of the electrode, the technical difficulties that the currently known methods of manufacturing semiconductor memory devices with a stacked capacitor cell structure encounter are effectively eliminated and consequently troubles such as short-circuited lower capacitor electrodes become non-existent.
摘要:
Regions having different impurity concentrations are formed in the main surface region of the semiconductor substrate. Accordingly, when the substrate is oxidized, oxide films having different thickness are formed. More specifically, the oxide film is formed more deeply on the surface region of the substrate having a high impurity concentration in which ions are injected than on the surface region in which no ions are injected. In the etching step, since the thinner oxide film is removed while the thicker oxide film remains, the surface of the region under the thinner oxide film is exposed, and thus a contact hole is formed. If, in the step of forming a contact hole, a portion of the thinner oxide film is covered by a resist pattern, only the regiion of the oxide film which is not masked by the resist pattern is etched and the substrate surface thereunder is exposed, and thus a contact hole is formed.