Abstract:
To program in a nonvolatile memory device include a plurality of memory cells that are programmed into multiple states through at least two program steps, a primary program is performed from an erase level to a first target level with respect to the memory cells coupled to a selected word line A preprogram is performed from the erase level to a preprogram level in association with the primary program with respect to the memory cells coupled to the selected word line, where the preprogram level is larger than the erase level and smaller than the first target level A secondary program is performed from the preprogram level to a second target level with respect to the preprogrammed memory cells coupled to the selected word line.
Abstract:
To program in a nonvolatile memory device include a plurality of memory cells that are programmed into multiple states through at least two program steps, a primary program is performed from an erase level to a first target level with respect to the memory cells coupled to a selected word line A preprogram is performed from the erase level to a preprogram level in association with the primary program with respect to the memory cells coupled to the selected word line, where the preprogram level is larger than the erase level and smaller than the first target level A secondary program is performed from the preprogram level to a second target level with respect to the preprogrammed memory cells coupled to the selected word line.
Abstract:
A method of programming memory cells for a non-volatile memory device is provided. The method includes performing an incremental step pulse program (ISPP) operation based on a program voltage, a first verification voltage, and a second verification voltage, and changing an increment value of the program voltage based on a first pass-fail result of the memory cells, the first pass-fail result being generated based on the first verification voltage. The ISPP operation is finished based on a second pass-fail result of the memory cells, the second pass-fail result being generated based on the second verification voltage.
Abstract:
A nonvolatile memory device includes a plurality of memory cells connected to a wordline and arranged in a row direction, bitlines connected to the plurality of memory cells, respectively, and a bitline bias circuit configured to separately control bias voltages provided to the bitlines according to positions of the memory cells along the row direction.
Abstract:
In one embodiment, the non-volatile memory device includes a well of a first conductivity type formed in a substrate, and a first plurality of memory cell transistors connected in series to a bit line formed in the well. A buffer is formed in the substrate outside the well and is connected to the bit line. At least one de-coupling transistor is configured to de-couple the buffer from the bit line, and the de-coupling transistor is formed in the well.
Abstract:
A nonvolatile memory device, memory system and read method are disclosed. The memory device comprises a memory cell array comprising a plurality of memory blocks each having a plurality of memory cells adapted to store N bits, where N is an integer greater than 1, a page buffer configured to perform a read operation adapted to read data from the memory cell array and output read data, an error correction circuit configured to detect and correct an error in read data stored in a memory block K and generate corresponding error information, and a control circuit configured to reduce the number of bits stored in the plurality of memory cells for memory block K from N to J, where J is an integer less than N but greater than zero, in response to the error information.
Abstract:
A flash memory device comprising a high voltage generator circuit that is adapted to supply a program voltage having a target voltage to a selected word line is provided. The flash memory device is adapted to terminate the program interval in accordance with when the program voltage has been restored to the target voltage after dropping below the target voltage. A method for operating the flash memory device is also provided.
Abstract:
One embodiment of the method includes determining a type of cells in a block of the flash memory if an error is detected in at least a portion of the block, and selectively changing one of a cell type indicator and a bad block indicator associated with the block based on the determined type of cells in the block. The cell type indicator indicates a type of the cells in the associated block, and the bad block indicator indicates whether the associated block is a usable block.
Abstract:
A method of programming memory cells for a non-volatile memory device is provided. The method includes performing an incremental step pulse program (ISPP) operation based on a program voltage, a first verification voltage, and a second verification voltage, and changing an increment value of the program voltage based on a first pass-fail result of the memory cells, the first pass-fail result being generated based on the first verification voltage. The ISPP operation is finished based on a second pass-fail result of the memory cells, the second pass-fail result being generated based on the second verification voltage.
Abstract:
A non-volatile memory may include a flag cell array, wherein each flag cell is arranged in the memory cell array interspersed among the plurality of memory cells. The flag cell array may include a plurality of flag cells indicating whether a corresponding row is MSB programmed. The non-volatile memory device performs an algorithm to read out data stored in the memory cell based on whether the memory cells of a row are MSB programmed. When determining whether the corresponding row is MSB programmed, a flag cell that is not normally operated may be replaced by a redundancy flag cell or data of the flag cell that is not normally operated may be excluded. Thus, the reliability in reading out of data and the production yield of the non-volatile memory may be improved.