Abstract:
According to one embodiment, a magnetic memory device includes a semiconductor substrate, a memory cell array area on the semiconductor substrate, the memory cell array area including magnetoresistive elements, each of the magnetoresistive elements having a reference layer with an invariable magnetization, a storage layer with a variable magnetization, and a tunnel barrier layer therebetween, a magnetic field generating area which generates a first magnetic field cancelling a second magnetic field applying from the reference layer to the storage layer, and which is separated from the magnetoresistive elements, and a closed magnetic path area functioning as a closed magnetic path of the first magnetic field, and surrounding the memory cell array area and the magnetic field generating area.
Abstract:
According to one embodiment, a magnetoresistive effect element includes a multilayer film including a transition metal nitride film, an antiferromagnetic film, a first ferromagnetic film, a nonmagnetic film, and a perpendicular magnetic anisotropic film stacked in that order. The first ferromagnetic film has a negative perpendicular magnetic anisotropic constant. Magnetization of the first ferromagnetic film is caused to point in a direction perpendicular to the film surface forcibly by an exchange-coupling magnetic field generated by the antiferromagnetic film.
Abstract:
According to one embodiment, a magnetic memory device includes a first magnetic layer having a variable magnetization direction, and including a first main surface and a second main surface located opposite to the first main surface, a second magnetic layer provided on a first main surface side of the first magnetic layer, and having a fixed magnetization direction, and a nonmagnetic layer provided between the first magnetic layer and the second magnetic layer, wherein saturation magnetization of part of the first magnetic layer which is located close to the first main surface is higher than saturation magnetization of part of the first magnetic layer which is located close to the second main surface.
Abstract:
According to one embodiment, a magnetic memory device includes: a first magnetic layer; a nonmagnetic layer on the first magnetic layer; a second magnetic layer on the nonmagnetic layer; and an insulator film on the nonmagnetic layer surrounding a side surface of the second magnetic layer. The second magnetic layer has an area of a surface facing the nonmagnetic layer smaller than that of the nonmagnetic layer. The nonmagnetic layer includes a first region that is provided between the first magnetic layer and the insulator film. The first region includes an amorphous state.
Abstract:
According to one embodiment, a magnetic memory device includes a semiconductor substrate, a memory cell array area on the semiconductor substrate, the memory cell array area including magnetoresistive elements, each of the magnetoresistive elements having a reference layer with an invariable magnetization, a storage layer with a variable magnetization, and a tunnel barrier layer therebetween, a magnetic field generating area which generates a first magnetic field cancelling a second magnetic field applying from the reference layer to the storage layer, and which is separated from the magnetoresistive elements, and a closed magnetic path area functioning as a closed magnetic path of the first magnetic field, and surrounding the memory cell array area and the magnetic field generating area.
Abstract:
According to one embodiment, a semiconductor device includes a MRAM chip including a semiconductor substrate and a memory cell array area includes magnetoresistive elements which are provided on the semiconductor substrate, and a magnetic shield layer separated from the MRAM chip, surrounding the memory cell array area in a circumferential direction of the MRAM chip, and having a closed magnetic path.
Abstract:
According to one embodiment, a device including a magnetoresistive element is disclosed. The device includes a substrate, a second layer provided on the substrate and including a magnetic material, and a third layer provided on a top or bottom of the second layer and including a material having a negative coefficient of thermal expansion.
Abstract:
According to one embodiment, a magnetic field applying apparatus includes a stage on which a semiconductor wafer having a major surface provided with a magnetoresistive effect element is placed, and an external magnetic field supplying unit configured to supply an external magnetic field to the semiconductor wafer planed on the stage. The external magnetic field supplying unit is provided on a reverse surface side or a lateral surface side of the semiconductor wafer placed on the stage.
Abstract:
According to one embodiment, a magnetic memory device includes a semiconductor substrate, a magnetoresistive element provided on the semiconductor substrate and includes a storage layer, a tunnel barrier layer, and a reference layer which are stacked, the reference layer having a magnetization direction perpendicular to a principal surface of the semiconductor substrate, and a magnetic field generation section provided away from the magnetoresistive element and configured to generate a magnetic field perpendicular to the principal surface of the semiconductor substrate to reduce a magnetic field from the reference layer which is applied to the storage layer.
Abstract:
According to one embodiment, a magnetic memory comprises an electrode, a memory layer which is formed on the electrode and has magnetic anisotropy perpendicular to a film plane, and in which a magnetization direction is variable, a tunnel barrier layer formed on the memory layer, and a reference layer which is formed on the tunnel barrier layer and has magnetic anisotropy perpendicular to the film plane, and in which a magnetization direction is invariable. The memory layer has a positive magnetostriction constant on a side of the electrode, and a negative magnetostriction constant on a side of the tunnel barrier layer.