Abstract:
Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.
Abstract:
An electron beam detection apparatus includes a first aperture element including a first set of apertures. The apparatus includes a second aperture element including a second set of apertures. The second set of apertures is arranged in a pattern corresponding with the pattern of the first plurality of apertures. The detection apparatus includes an electron-photon conversion element configured to receive electrons of the electron beam transmitted through the first and second aperture elements. The electron-photon conversion element is configured to generate photons in response to the received electrons. The detection apparatus includes an optical assembly including one or more optical elements. The detection apparatus includes a detector assembly. The optical elements of the optical assembly are configured to direct the generated photons from the electron-photon conversion system to the detector assembly.
Abstract:
Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.
Abstract:
A stage metrology suitable for REBL includes an interferometer stage metrology system configured to measure the position and rotation of a short-stroke wafer scanning stage, wherein the interferometer metrology system includes two or more interferometers for each axis of measurement, wherein a first interferometer mirror is disposed on a first surface of the short-stroke wafer scanning stage and a second interferometer mirror is disposed on a second surface of the short-stroke wafer scanning stage, and a control system configured to determine a shape error for the first interferometer mirror using two or more interferometer measurements from the two or more interferometers associated with the first interferometer mirror and a shape error for the second interferometer mirror using two or more interferometer measurements from the two or more interferometers associated with the second interferometer mirror.
Abstract:
One embodiment relates to an apparatus for alignment measurement. A laser source generates an incident laser beam which is directed to a two-dimensional target grating on a target substrate such that multiple diffracted beams are created. A beam splitter transmits a first plurality of the multiple diffracted beams onto a first optical path and directs a second plurality of the multiple diffracted beams onto a second optical path. Each of the two optical paths includes a reference grating and a detector. Another embodiment relates to a method of measuring alignment of a target substrate. Other embodiments, aspects and features are also disclosed.
Abstract:
An electron beam detection apparatus includes a first aperture element including a first set of apertures. The apparatus includes a second aperture element including a second set of apertures. The second set of apertures is arranged in a pattern corresponding with the pattern of the first plurality of apertures. The detection apparatus includes an electron-photon conversion element configured to receive electrons of the electron beam transmitted through the first and second aperture elements. The electron-photon conversion element is configured to generate photons in response to the received electrons. The detection apparatus includes an optical assembly including one or more optical elements. The detection apparatus includes a detector assembly. The optical elements of the optical assembly are configured to direct the generated photons from the electron-photon conversion system to the detector assembly.
Abstract:
A stage metrology suitable for REBL includes an interferometer stage metrology system configured to measure the position and rotation of a short-stroke wafer scanning stage, wherein the interferometer metrology system includes two or more interferometers for each axis of measurement, wherein a first interferometer mirror is disposed on a first surface of the short-stroke wafer scanning stage and a second interferometer mirror is disposed on a second surface of the short-stroke wafer scanning stage, and a control system configured to determine a shape error for the first interferometer mirror using two or more interferometer measurements from the two or more interferometers associated with the first interferometer mirror and a shape error for the second interferometer mirror using two or more interferometer measurements from the two or more interferometers associated with the second interferometer mirror.