Abstract:
A quantum well device includes a first layer of a first two-dimensional material, a second layer of a second two-dimensional material, and a third layer of a third two-dimensional material disposed between the first layer and second layer. The first layer, the second layer, and the third layer are adhered predominantly by van der Waals force.
Abstract:
A device and method of making such a device that includes a flexible OLED layer comprising a light emitting side and a self-oscillating layer disposed on the light emitting side of the flexible OLED layer. The self-oscillating layer comprises an elastic polymer matrix containing a photo-responsive element and independently self-oscillating gel islands. The photo-responsive element in the elastic polymer matrix causes synchronization of the independently self-oscillating polymer gel islands in response to light emitted from the flexible OLED layer.
Abstract:
A video surveillance system with real-time object re-identification capabilities, which employs an object re-identification algorithm and an edge computing architecture. An operator monitors video images from the multiple cameras, and when a target object is observed, a target image containing the object is transmitted to all video cameras for object re-identification. Each video camera has dedicated processing circuitry that performs an object re-identification algorithm to identify the target in video images captured by that camera in real time. The algorithm calculates a frequency domain similarity measure between the target image and test images captured by the camera. The similarity measure in the frequency domain is calculated as a dot product of the 1D discrete Fourier transforms of the target image data and of the test image data. The multiple cameras also transmit object re-identification results to each other to achieve more efficient and intelligent object re-identification.
Abstract:
A method is provided for detecting faults in a conductive circuitry. The method includes: printing the conductive circuitry on top of a substrate using a printing head; heating the conductive circuitry with a heat source; scanning the heated conductive circuitry with a non-contact thermal detector; detecting, with the non-contact thermal detector and concurrently with the printing of the conductive circuitry, the faults where the printing head failed to print; and reprinting the faults with the printing head.
Abstract:
A quantum well device includes a first layer of a first two-dimensional material, a second layer of a second two-dimensional material, and a third layer of a third two-dimensional material disposed between the first layer and second layer. The first layer, the second layer, and the third layer are adhered predominantly by van der Waals force.
Abstract:
A thermochromic device includes a film and a number of vanadium dioxide nanowires disposed within the film. Each of the number of vanadium dioxide nanowires may have an aspect ratio between 10 and 500. The vanadium dioxide nanowires may have a length between 1 micrometer and 10 micrometers. The vanadium dioxide nanowires may have a non-conducting to conductor phase change temperature between 20 degrees Celsius and 60 degrees Celsius.
Abstract:
A method of detecting a defect in a barrier film. The method includes: coating the barrier film with a solution having a plurality of probes, where each of the probes has a nanoparticle; forcing a probe of the plurality of probes to penetrate the defect by applying a field to the barrier film, where the field induces an attractive power to the nanoparticles of the probes; applying an optical excitation (OE) to the barrier film; and identifying the defect in the barrier film based on an optical signal emitted, in response to the OE, by the probe forced to penetrate the defect.
Abstract:
A fabrication method achieves bump bonds (to connect two electronic devices) with a pitch of less than 20 μm using UV-curable conductive epoxy resin cured with an array of nano-LEDs. Nano-LEDs are devices with sizes less than or equal to 5 μm, typically arranged in an array. After deposition of the uncured conductive epoxy layer, the nano-LED array enables a fast curing of the bumps with high spatial resolution. Next, the uncured resin is washed off and the chips are assembled, before final thermal curing takes place.
Abstract:
A method is provided for manufacturing a three-dimensional printed (3D-printed) object. The method includes: depositing first threads separated by gaps in a first run of a first layer; depositing second threads in a second run of the first layer, and the second threads fill the gaps between the first threads and create a plurality of first-layer vertical interfaces along a length of each of the first threads; depositing third threads separated by gaps in a first run of a second layer; and depositing fourth threads in a second run of the second layer, and the fourth threads fill the gaps between the third threads and create a plurality of second-layer vertical interfaces along a length of each of the third threads. The second layer is deposited on top of the first layer so that one or more of the first-layer vertical interfaces do not overlap with the second-layer vertical interfaces.
Abstract:
A method of forming a coating that includes depositing a multicomponent glass layer on a polymer substrate and depositing a heat absorbing layer on the multicomponent glass layer. Inducing spinodal decomposition of the multicomponent glass layer by annealing the heat absorbing layer, and etching at least one of a phase separated component of the multicomponent glass layer. The spinodal decomposition may be achieved through a pulse thermal or electromagnetic assisted annealing process. The coating may then be used as a hydrophilic surface, or may be fluorinated using conventional methods to produce the superhydrophobic coating.