Abstract:
The composite structural material of the present invention includes a base (X) and a layer (Y) stacked on the base (X). The layer (Y) includes a reaction product (R) of a metal oxide (A) and a phosphorus compound (B). In the infrared absorption spectrum of the layer (Y) in the range of 800 to 1400 cm−1, the wave number (n1) at which the infrared absorption reaches maximum is in the range of 1080 to 1130 cm−1.
Abstract:
The method disclosed includes: a step (I) of preparing a dispersion liquid (S) including an aluminum compound (A); a step (II) of mixing the dispersion liquid (S) and a predetermined phosphorus compound (B) so as to prepare a coating liquid (U); a step (III) of applying the coating liquid (U) onto the base (X) so as to form a precursor layer of the layer (Y); and a step (IV) of subjecting the precursor layer to heat treatment at a temperature of 110° C. or more so as to form the layer (Y). The aluminum compound (A) can be formed by adding an acid to a solution including an aluminate. The number of moles (NM) of aluminum atoms derived from the aluminum compound (A) and the number of moles (NP) of phosphorus atoms derived from the phosphorus compound (B) satisfy 0.8≦(NM)/(NP)≦4.5.
Abstract:
The composite structural material of the present invention includes a base (X) and a layer (Y) stacked on the base (X). The layer (Y) includes a reaction product (R) of a metal oxide (A) and a phosphorus compound (B). In the infrared absorption spectrum of the layer (Y) in the range of 800 to 1400 cm−1, the wave number (n1) at which the infrared absorption reaches maximum is in the range of 1080 to 1130 cm−1.
Abstract:
A product provided includes a packaging material, and the packaging material includes a multilayer structure. The multilayer structure includes at least one base (X), at least one layer (Y), and at least one layer (Z). The layer (Y) contains an aluminum atom. The layer (Z) contains a polymer (E) containing a monomer unit having a phosphorus atom. The multilayer structure includes at least one pair of the layer (Y) and the layer (Z) that are contiguously stacked. This product is excellent in gas barrier properties, and adapted to maintain the gas barrier properties at a high level even when subjected to physical stresses such as deformation and impact.
Abstract:
A composite structure disclosed includes a base (X) and a layer (Y) stacked on the base (X). The layer (Y) includes a reaction product (R). The reaction product (R) is a reaction product formed by a reaction at least between a metal oxide (A) and a phosphorus compound (B). A peak for a binding energy of an oxygen-atom 1s orbital observed by X-ray photoelectron spectroscopy of the layer (Y) is located at 532.0 eV or higher, and the peak has a half width of less than 2.0 eV.
Abstract:
A composite structure disclosed includes a base (X) and a layer (Y) stacked on the base (X). The layer (Y) includes a reaction product (R). The reaction product (R) is a reaction product formed by a reaction at least between a metal oxide (A) and a phosphorus compound (B). A peak for a binding energy of an oxygen-atom 1s orbital observed by X-ray photoelectron spectroscopy of the layer (Y) is located at 532.0 eV or higher, and the peak has a half width of less than 2.0 eV.
Abstract:
The method disclosed includes: a step (I) of preparing a dispersion liquid (S) including an aluminum compound (A); a step (II) of mixing the dispersion liquid (S) and a predetermined phosphorus compound (B) so as to prepare a coating liquid (U); a step (III) of applying the coating liquid (U) onto the base (X) so as to form a precursor layer of the layer (Y); and a step (IV) of subjecting the precursor layer to heat treatment at a temperature of 110° C. or more so as to form the layer (Y). The aluminum compound (A) can be formed by adding an acid to a solution including an aluminate. The number of moles (NM) of aluminum atoms derived from the aluminum compound (A) and the number of moles (NP) of phosphorus atoms derived from the phosphorus compound (B) satisfy 0.8≦(NM)/(NP)≦4.5.
Abstract:
A multilayer structure disclosed is a multilayer structure including at least one base (X), at least one layer (Y), and at least one layer (Z). The layer (Y) contains an aluminum atom. The layer (Z) contains a polymer (E) having a plurality of phosphorus atoms. The polymer (E) is a polymer of at least one monomer including a vinylphosphonic acid compound. The multilayer structure includes at least one pair of the layer (Y) and the layer (Z) that are contiguously stacked. The layer (Z) is formed by applying a coating liquid (V) which is a solution of the polymer (E) having a plurality of phosphorus atoms. The multilayer structure disclosed is excellent in gas barrier properties, and can maintain the gas barrier properties at a high level even when subjected to physical stresses such as deformation and impact.
Abstract:
A composite structure disclosed includes a base (X) and a layer (Y). The layer (Y) includes a mixture of a metal oxide (A), a phosphorus compound (B), and a compound (La) (silicon compound). Examples of the phosphorus compound (B) and the compound (La) include a compound containing a site capable of reacting with the metal oxide (A). When the number of moles of metal atoms (M) derived from the metal oxide (A) is denoted by NM and the number of moles of Si atoms derived from the compound (La) is denoted by NSi, 0.01≦NSi/NM≦0.30 is satisfied. When the number of moles of phosphorus atoms derived from the phosphorus compound (B) is denoted by NP, 0.8≦NM/NP≦4.5 is satisfied.
Abstract:
A composite structure disclosed includes a base (X) and a layer (Y). The layer (Y) includes a mixture of a metal oxide (A), a phosphorus compound (B), and a compound (La) (silicon compound). Examples of the phosphorus compound (B) and the compound (La) include a compound containing a site capable of reacting with the metal oxide (A). When the number of moles of metal atoms (M) derived from the metal oxide (A) is denoted by NM and the number of moles of Si atoms derived from the compound (La) is denoted by NSi, 0.01≦NSi/NM≦0.30 is satisfied. When the number of moles of phosphorus atoms derived from the phosphorus compound (B) is denoted by NP, 0.8≦NM/NP≦4.5 is satisfied.