Stress memorization dielectric optimized for NMOS and PMOS
    1.
    发明授权
    Stress memorization dielectric optimized for NMOS and PMOS 有权
    针对NMOS和PMOS优化的应力记忆电介质

    公开(公告)号:US08101476B2

    公开(公告)日:2012-01-24

    申请号:US12541335

    申请日:2009-08-14

    IPC分类号: H01L21/8238

    摘要: A method for forming a tensile SiN stress layer for stress memorization enhancement of NMOS transistors with a high Si—H/N—H bond ratio that does not degrade PMOS transistors. A CMOS integrated circuit is processed through a NMOS source and drain implant but not through NMOS source and drain anneal. A SiN dielectric layer is deposited such that an area ratio of a Si—H peak to a N—H peak in a FTIR spectrum is greater than 7 and a tensile stress of the SiN dielectric is greater than 150 MPa. The CMOS integrated circuit is annealed after deposition of the SiN dielectric layer and the SiN dielectric layer is removed from at least a part of the integrated circuit.

    摘要翻译: 一种用于形成具有不降低PMOS晶体管的高Si-H / N-H键比的NMOS晶体管的应力记忆增强的拉伸SiN应力层的方法。 CMOS集成电路通过NMOS源极和漏极注入而不是通过NMOS源极和漏极退火进行处理。 沉积SiN电介质层,使得FTIR光谱中Si-H峰与N-H峰的面积比大于7,并且SiN电介质的拉伸应力大于150MPa。 在沉积SiN电介质层之后对CMOS集成电路进行退火,并且从集成电路的至少一部分去除SiN介电层。

    Method of incorporating stress into a transistor channel by use of a backside layer
    2.
    发明申请
    Method of incorporating stress into a transistor channel by use of a backside layer 有权
    通过使用背面层将应力引入晶体管沟道的方法

    公开(公告)号:US20060024873A1

    公开(公告)日:2006-02-02

    申请号:US10902657

    申请日:2004-07-28

    IPC分类号: H01L21/336 H01L21/8234

    摘要: The present invention provides the method includes forming source/drain regions 170 in a semiconductor wafer substrate 110 adjacent a gate structure 130 located on a front side of the semiconductor wafer substrate 110. The source/drain regions 170 have a channel region 175 located between them. A first stress-inducing layer 190 is placed on a backside of the semiconductor wafer substrate 110 and is subjected to a thermal anneal to cause a stress to form in the channel region 175.

    摘要翻译: 本发明提供的方法包括在位于半导体晶片衬底110的前侧的栅极结构130附近的半导体晶片衬底110中形成源/漏区170。 源极/漏极区170具有位于它们之间的沟道区175。 第一应力诱导层190放置在半导体晶片衬底110的背面,并进行热退火以在沟道区175中形成应力。

    Method for introducing hydrogen into a channel region of a metal oxide semiconductor (MOS) device
    3.
    发明申请
    Method for introducing hydrogen into a channel region of a metal oxide semiconductor (MOS) device 审中-公开
    将氢引入金属氧化物半导体(MOS)器件的沟道区域的方法

    公开(公告)号:US20050118770A1

    公开(公告)日:2005-06-02

    申请号:US10956864

    申请日:2004-10-01

    摘要: The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit including the same. The method for manufacturing the semiconductor device, among other steps, includes forming a gate structure (230) over a substrate (210) and forming at least a portion of source/drain regions in the substrate (210). The method further includes annealing the substrate containing the at least a portion of source/drain regions in the presence of hydrogen, and forming an interlevel dielectric layer over the substrate (210) having previously been annealed in the presence of hydrogen.

    摘要翻译: 本发明提供一种半导体器件的制造方法及其制造方法。 除了其他步骤之外,制造半导体器件的方法包括在衬底(210)上形成栅极结构(230)并且形成衬底(210)中的源极/漏极区域的至少一部分。 该方法还包括在存在氢的情况下对包含至少一部分源极/漏极区的衬底进行退火,以及在预先在氢气存在下预先退火的衬底(210)上形成层间电介质层。

    Method of incorporating stress into a transistor channel by use of a backside layer
    4.
    发明授权
    Method of incorporating stress into a transistor channel by use of a backside layer 有权
    通过使用背面层将应力引入晶体管沟道的方法

    公开(公告)号:US07402535B2

    公开(公告)日:2008-07-22

    申请号:US10902657

    申请日:2004-07-28

    IPC分类号: H01L21/469 H01L21/31

    摘要: The present invention provides the method includes forming source/drain regions 170 in a semiconductor wafer substrate 110 adjacent a gate structure 130 located on a front side of the semiconductor wafer substrate 110. The source/drain regions 170 have a channel region 175 located between them. A first stress-inducing layer 190 is placed on a backside of the semiconductor wafer substrate 110 and is subjected to a thermal anneal to cause a stress to form in the channel region 175.

    摘要翻译: 本发明提供的方法包括在位于半导体晶片衬底110的前侧的栅极结构130附近的半导体晶片衬底110中形成源/漏区170。 源极/漏极区170具有位于它们之间的沟道区175。 第一应力诱导层190放置在半导体晶片衬底110的背面,并进行热退火以在沟道区175中形成应力。

    IN-SITU CARBON DOPED e-SiGeCB STACK FOR MOS TRANSISTOR
    5.
    发明申请
    IN-SITU CARBON DOPED e-SiGeCB STACK FOR MOS TRANSISTOR 有权
    用于MOS晶体管的In-SITU碳掺杂e-SiGeCB堆叠

    公开(公告)号:US20090309140A1

    公开(公告)日:2009-12-17

    申请号:US12482896

    申请日:2009-06-11

    IPC分类号: H01L29/78 H01L21/336

    摘要: An integrated circuit containing a PMOS transistor with p-channel source/drain (PSD) regions which include a three layer PSD stack containing Si—Ge, carbon and boron. The first PSD layer is Si—Ge and includes carbon at a density between 5×1019 and 2×1020 atoms/cm3. The second PSD layer is Si—Ge and includes carbon at a density between 5'31019 atoms/cm3 and 2×1020 atoms/cm3 and boron at a density above 5×1019 atoms/cm3. The third PSD layer is silicon or Si—Ge, includes boron at a density above 5×1019 atoms/cm3 and is substantially free of carbon. After formation of the three layer epitaxial stack, the first PSD layer has a boron density less than 10 percent of the boron density in the second PSD layer. A process for forming an integrated circuit containing a PMOS transistor with a three layer PSD stack in PSD recesses.

    摘要翻译: 包含具有p沟道源极/漏极(PSD)区域的PMOS晶体管的集成电路,其包括含有Si-Ge,碳和硼的三层PSD堆叠。 第一PSD层是Si-Ge,并且包括密度在5×1019到2×1020原子/ cm3之间的碳。 第二PSD层是Si-Ge,并且包括密度在5×1019原子/ cm3至2×1020原子/ cm3之间的碳和密度高于5×1019原子/ cm3的硼。 第三PSD层是硅或Si-Ge,包括密度高于5×1019原子/ cm3的硼并且基本上不含碳。 在形成三层外延堆叠之后,第一PSD层的硼密度小于第二PSD层中硼密度的10%。 一种在PSD凹槽中形成具有三层PSD堆叠的PMOS晶体管的集成电路的工艺。

    Antimony ion implantation for semiconductor components
    7.
    发明申请
    Antimony ion implantation for semiconductor components 有权
    半导体元件的锑离子注入

    公开(公告)号:US20070218662A1

    公开(公告)日:2007-09-20

    申请号:US11725927

    申请日:2007-03-20

    IPC分类号: H01L21/425

    摘要: A method is disclosed for implanting and activating antimony as a dopant in a semiconductor substrate. A method is also disclosed for implanting and activating antimony to form a source/drain extension region in the formation of a transistor, in such a manner as to achieve high activation and avoid deactivation via subsequent exposure to high temperatures. This technique facilitates the formation of very thin source/drain regions that exhibit reduced sheet resistance while also suppressing short channel effects. Enhancements to these techniques are also suggested for more precise implantation of antimony to create a shallower source/drain extension, and to ensure formation of the source/drain extension region to underlap the gate. Also disclosed are transistors and other semiconductor components that include doped regions comprising activated antimony, such as those formed according to the disclosed methods.

    摘要翻译: 公开了一种用于在半导体衬底中注入和活化锑作为掺杂剂的方法。 还公开了一种用于注入和活化锑以形成晶体管的源极/漏极延伸区域的方法,以便实现高激活并避免随后暴露于高温而失活。 该技术有助于形成非常薄的源极/漏极区域,其表现出降低的薄层电阻,同时还抑制短沟道效应。 还建议对这些技术的增强用于更精确地注入锑以产生较浅的源极/漏极延伸,并且确保形成源极/漏极延伸区域以使栅极下沉。 还公开了晶体管和其它半导体组件,其包括包含活性锑的掺杂区域,例如根据所公开的方法形成的那些。

    Drive current improvement from recessed SiGe incorporation close to gate
    9.
    发明授权
    Drive current improvement from recessed SiGe incorporation close to gate 有权
    驱动目前从嵌入式SiGe并入门口的改进

    公开(公告)号:US07244654B2

    公开(公告)日:2007-07-17

    申请号:US10901568

    申请日:2004-07-29

    IPC分类号: H01L21/336

    摘要: A method (100) of forming a transistor includes forming a gate structure (106, 108) over a semiconductor body and forming recesses (112) substantially aligned to the gate structure in the semiconductor body. Silicon germanium is then epitaxially grown (114) in the recesses, followed by forming sidewall spacers (118) over lateral edges of the gate structure. The method continues by implanting source and drain regions in the semiconductor body (120) after forming the sidewall spacers. The silicon germanium formed in the recesses resides close to the transistor channel and serves to provide a compressive stress to the channel, thereby facilitating improved carrier mobility in PMOS type transistor devices.

    摘要翻译: 形成晶体管的方法(100)包括在半导体主体上形成栅极结构(106,108),并形成与半导体本体中的栅极结构基本对齐的凹槽(112)。 然后在凹槽中外延生长硅(114),随后在栅极结构的横向边缘上形成侧壁间隔物(118)。 该方法通过在形成侧壁间隔物之后将源区和漏区注入半导体本体(120)中来继续。 在凹槽中形成的硅锗位于晶体管沟道附近,用于向通道提供压缩应力,从而有助于改善PMOS型晶体管器件的载流子迁移率。