摘要:
An oxide film is formed on a target substrate by CVD, in a process field to be selectively supplied with a first process gas including a silicon source gas and a second process gas including an oxidizing gas. The oxide film is formed by performing cycles each alternately including first and second steps. The first step performs supply of the first process gas, thereby forming an adsorption layer containing silicon on a surface of the target substrate. The second performs supply of the second process gas, thereby oxidizing the adsorption layer on the surface of the target substrate. The silicon source gas is a univalent or bivalent aminosilane gas, and each of the cycles is arranged to use a process temperature lower than that used for a trivalent aminosilane gas.
摘要:
An oxide film is formed on a target substrate by CVD, in a process field to be selectively supplied with a first process gas including a source gas containing a film source element and no amino group, a second process gas including an oxidizing gas, and a third process gas including a preliminary treatment gas. A first step includes an excitation period of supplying the third process gas excited by an exciting mechanism, thereby performing a preliminary treatment on the target substrate by preliminary treatment gas radicals. A second step performs supply of the first process gas, thereby adsorbing the film source element on the target substrate. A third step includes an excitation period of supplying the second process gas excited by an exciting mechanism, thereby oxidizing the film source element adsorbed on the target substrate by oxidizing gas radicals.
摘要:
An oxide film is formed on a target substrate by CVD, in a process field to be selectively supplied with a first process gas including a silicon source gas and a second process gas including an oxidizing gas. The oxide film is formed by performing cycles each alternately including first and second steps. The first step performs supply of the first process gas, thereby forming an adsorption layer containing silicon on a surface of the target substrate. The second performs supply of the second process gas, thereby oxidizing the adsorption layer on the surface of the target substrate. The silicon source gas is a univalent or bivalent aminosilane gas, and each of the cycles is arranged to use a process temperature lower than that used for a trivalent aminosilane gas.
摘要:
An oxide film is formed on a target substrate by CVD, in a process field to be selectively supplied with a first process gas including a source gas containing a film source element and no amino group, a second process gas including an oxidizing gas, and a third process gas including a preliminary treatment gas. A first step includes an excitation period of supplying the third process gas excited by an exciting mechanism, thereby performing a preliminary treatment on the target substrate by preliminary treatment gas radicals. A second step performs supply of the first process gas, thereby adsorbing the film source element on the target substrate. A third step includes an excitation period of supplying the second process gas excited by an exciting mechanism, thereby oxidizing the film source element adsorbed on the target substrate by oxidizing gas radicals.
摘要:
An oxidation method includes supplying oxidizing and deoxidizing gases to a process field by spouting the gases in lateral directions respectively from first and second groups of gas spouting holes. Each group of holes is disposed adjacent to target substrates on one side of the process field and arrayed over a length corresponding to the process field in a vertical direction. Gases are exhausted through an exhaust port disposed opposite to the first and second groups of gas spouting holes with the process field interposed therebetween and present over a length corresponding to the process field in the vertical direction. This causes the gases to flow along the surfaces of the target substrates, thus forming gas flows parallel with the target substrates. The process field is heated by a heater disposed around the process container to generate oxygen radicals and hydroxyl group radicals within the process field.
摘要:
In an oxidation method for a semiconductor process, target substrates are placed at intervals in a vertical direction within a process field of a process container. An oxidizing gas and a deoxidizing gas are supplied to the process field from one side of the process field while gas is exhausted from the other side. One or both of the oxidizing gas and the deoxidizing gas are activated. The oxidizing gas and the deoxidizing gas are caused to react with each other, thereby generating oxygen radicals and hydroxyl group radicals within the process field. An oxidation process is performed on the surfaces of the target substrate by use of the oxygen radicals and the hydroxyl group radicals.
摘要:
In an oxidation method for a semiconductor process, target substrates are placed at intervals in a vertical direction within a process field of a process container. An oxidizing gas and a deoxidizing gas are supplied to the process field from one side of the process field while gas is exhausted from the other side. One or both of the oxidizing gas and the deoxidizing gas are activated. The oxidizing gas and the deoxidizing gas are caused to react with each other, thereby generating oxygen radicals and hydroxyl group radicals within the process field. An oxidation process is performed on the surfaces of the target substrate by use of the oxygen radicals and the hydroxyl group radicals.
摘要:
An oxidation apparatus for a semiconductor process includes a gas supply system configured to supply an oxidizing gas and a deoxidizing gas to the process field of a process container through a gas supply port disposed adjacent to target substrates on one side of the process field. The gas supply port includes a plurality of gas spouting holes arrayed over a length corresponding to the process field in a vertical direction. A heater is disposed around the process container and configured to heat the process field. A control section is preset to perform control such that the oxidizing gas and the deoxidizing gas are caused to react with each other, thereby generating oxygen radicals and hydroxyl group radicals within the process field, and an oxidation process is performed on the surfaces of the target substrate by use of the oxygen radicals and the hydroxyl group radicals.
摘要:
In an oxidation method for a semiconductor process, target substrates are placed at intervals in a vertical direction within a process field of a process container. An oxidizing gas and a deoxidizing gas are supplied to the process field from one side of the process field while gas is exhausted from the other side. One or both of the oxidizing gas and the deoxidizing gas are activated. The oxidizing gas and the deoxidizing gas are caused to react with each other, thereby generating oxygen radicals and hydroxyl group radicals within the process field. An oxidation process is performed on the surfaces of the target substrate by use of the oxygen radicals and the hydroxyl group radicals.
摘要:
A silicon-containing insulating film is formed on a target substrate by CVD, in a process field to be selectively supplied with a first process gas including di-iso-propylaminosilane gas and a second process gas including an oxidizing gas or nitriding gas. The film is formed by performing a plurality of times a cycle alternately including first and second steps. The first step performs supply of the first process gas, thereby forming an adsorption layer containing silicon on a surface of the target substrate. The second performs supply of the second process gas, thereby oxidizing or nitriding the adsorption layer on the surface of the target substrate. The second step includes an excitation period of supplying the second process gas to the process field while exciting the second process gas by an exciting mechanism.