Abstract:
Embodiments of the invention include a medical implant having a vertebral body replacement device, alone or in combination with other complimentary elements, configured to deliver one or more therapeutic substances. The one or more therapeutic substances may be contained in the medical implant or be ported to the medical implant.
Abstract:
Embodiments of the invention include a device for supplementing or replacing a spinal structure and therapeutically delivering radiation to tissue. Some embodiments include a radiation source and a combination of members surrounding the radiation source that move relative to one another to permit or restrict emission of radiation from the device.
Abstract:
A spinal implant includes a first component defining a surface. A second component is movable relative to the first component and defines a surface. An intermediate component is engageable with the first component and the second component. The intermediate component is configured for relative movement along the surface of the second component and is configured for relative movement along the surface of the first component in a first axial direction and a second, opposite axial direction such that movement of the intermediate component moves the second component relative to the first component between a first configuration and a second configuration. Methods of use are disclosed.
Abstract:
Embodiments of the invention include expandable medical implant systems and methods. The systems may include devices to reinforce a tube through which a fill material may be moved at least in part into expandable medical implants. In some embodiments, an implant replaces one or more of vertebral bodies, portions of vertebral bodies, discs, and portions of discs of the spine.
Abstract:
A spinal implant system includes a first member including at least one wall, which includes a first axial end surface, a second axial end surface and an outer surface including a locking cavity. A second member includes a first extension defining an inner surface and a second extension defining an inner surface, the inner surfaces defining a first cavity therebetween. At least one of the inner surfaces includes a first angled portion and a second angled portion. A third member is disposed in the first cavity, and includes a first arm and a second arm, at least one of the arms includes a protrusion. The third member is configured for axial translation relative between a first orientation and a second orientation. Methods of use are disclosed.
Abstract:
An interbody spacer includes an elongated body with a maximum width between opposite side walls and a maximum height between upper and lower bearing surfaces. The interbody spacer also includes a leading end nose connecting the side walls to facilitate insertion of the interbody spacer into a disc space between vertebrae in an insertion orientation, from which the interbody device is then rotated to position the upper and lower bearing surfaces in contact with the endplates of the adjacent vertebrae. The leading end nose forms a blunt convex nose between the upper and lower bearing surfaces to maximize the bearing surface area available to contact the adjacent endplates.
Abstract:
A spinal stabilization apparatus and method according to which a fastener is engaged with a bone structure of a spinal system. The fastener is connected to a rod by moving the rod downward toward the fastener in a sagittal plane, and the direction of extension of at least a portion of the rod in a coronal plane may be selectively adjusted in predetermined angular increments through 360 degrees.
Abstract:
A spinal implant for positioning in a space formed between vertebral members. The implant includes a number of sections that are pivotally attached together at pivot axes. The pivot axes include connectors that extend through at least a portion of the sections and are configured for the sections to be pivotally attached for the implant to be flexible to facilitate insertion into the space and to be configurable to the space. One of the sections may include a receptacle that is contained within the section. The receptacle has a fixed size and shape that holds bone growth material. The fixed size and shape of the receptacle prevents the bone growth from escaping during flexing of the implant.
Abstract:
Embodiments of the invention include expandable medical implant systems and methods. The systems may include devices to reinforce a tube through which a fill material may be moved at least in part into expandable medical implants. In some embodiments, an implant replaces one or more of vertebral bodies, portions of vertebral bodies, discs, and portions of discs of the spine.
Abstract:
An instrument is provided for use in orthopedic surgery for reduction of a connecting member such as a spinal rod toward an implant such as a bone screw. An embodiment of the instrument includes handle portions that are pivotable relative to each other and biased apart, and arm portions pivotable relative to each other and to the handle portions. Distal portions of the arm portions, which may be offset from the arm portions, provide structure for engaging a connecting member and an implant. Squeezing the handle portions force the distal portions of the arm portions together, forcing together the connecting member and the implant. A toothed bar and pawl may be provided to retain the instrument in a squeezed state.