摘要:
The invention provides a semiconductor integrated circuit device with improved designing efficiency while achieving higher functions. An inner circuit is surrounded by: a first cell in which a first switch element for connecting a power supply voltage line or an ground voltage supply line to a power supply line of an internal circuit is disposed below a first pair of power supply lines extending in a first direction; a second cell in which a second switch element and a third switch element are disposed below a pair of second power supply lines extending in a second direction, the second switch element for connecting a first bias line connected to a first well region and a first back bias line, and the third switch element for connecting a second bias line connected to a second well region and a second back bias line; and a third cell in which a plurality of kinds of elements are spread, including a power supply switch controller for controlling the first switch element below a corner power supply line for connecting the first and pair of second power supply lines, fourth and fifth switch elements for connecting the corresponding power supply voltage line and the ground voltage supply line of the circuit to the first and second bias lines, and a control circuit for controlling switch between the fourth and fifth switch elements and the second and third switch elements.
摘要:
The invention provides a semiconductor integrated circuit device with improved designing efficiency while achieving higher functions. An inner circuit is surrounded by a plurality of cells in which a first switch element for connecting a power supply voltage line or a ground voltage supply line to a power supply line of an internal circuit is disposed below power supply lines extending in a first and second directions, and the power lines are connected together.
摘要:
A semiconductor integrated circuit device enhanced in design efficiency while achieving multi-functionalization and power saving is to be provided. The semiconductor integrated circuit device has first through third circuit blocks, and is placed in a first power supply state in which the operation of internal circuits in the first circuit block is guaranteed in accordance with an instruction from the third circuit block or a second power supply state in which the operation of the internal circuits is not guaranteed. The second circuit block has an input unit which receives signals supplied from the first circuit block, and the input unit of the second circuit block has an input circuit which, in accordance with a control signal sent from said third circuit block to said second circuit block, causes a specific signal level to be maintained in compliance with the operating voltage of the second circuit block irrespective of the signal supplied from the first circuit block when the third circuit block instructs the second power supply state to the first circuit block.
摘要:
A semiconductor integrated circuit device enhanced in design efficiency while achieving multi-functionalization and power saving is to be provided. The semiconductor integrated circuit device has a first through third circuit blocks, and is placed in a first power supply state in which the operation of internal circuits in the first circuit block is guaranteed in accordance with an instruction from the third circuit block or a second power supply state in which the operation of the internal circuits is not guaranteed, wherein the second circuit block has an input unit which receives signals supplied from the first circuit block, and the input unit of the second circuit block has an input circuit which, in accordance with the control signal which was responded to when the second power supply state was instructed by the third circuit block to the first circuit block, causes a specific signal level to be maintained in compliance with the operating voltage of the second circuit block irrespective of the signal supplied from the first circuit block.
摘要:
A semiconductor integrated circuit device enhanced in design efficiency while achieving multi-functionalization and power saving is to be provided. The semiconductor integrated circuit device has first through third circuit blocks, and is placed in a first power supply state in which the operation of internal circuits in the first circuit block is guaranteed in accordance with an instruction from the third circuit block or a second power supply state in which the operation of the internal circuits is not guaranteed. The second circuit block has an input unit which receives signals supplied from the first circuit block, and the input unit of the second circuit block has an input circuit which, in accordance with a control signal sent from said third circuit block to said second circuit block, causes a specific signal level to be maintained in compliance with the operating voltage of the second circuit block irrespective of the signal supplied from the first circuit block when the third circuit block instructs the second power supply state to the first circuit block.
摘要:
A semiconductor integrated circuit device enhanced in design efficiency while achieving multi-functionalization and power saving is to be provided. The semiconductor integrated circuit device has first through third circuit blocks, and is placed in a first power supply state in which the operation of internal circuits in the first circuit block is guaranteed in accordance with an instruction from the third circuit block or a second power supply state in which the operation of the internal circuits is not guaranteed. The second circuit block has an input unit which receives signals supplied from the first circuit block, and the input unit of the second circuit block has an input circuit which, in accordance with a control signal sent from said third circuit block to said second circuit block, causes a specific signal level to be maintained in compliance with the operating voltage of the second circuit block irrespective of the signal supplied from the first circuit block when the third circuit block instructs the second power supply state to the first circuit block.
摘要:
A DRAM module is applied to the system LSI which is provided with a standby mode for suppressing the whole operation thereof and an operation standby mode which permits at least the DRAM module to operate but suppresses the operation of other circuits. The above-mentioned modes as well as a substrate bias control technology are applied to the CMOS system LSI that operates on a low voltage. The system LSI is controlled to hold or not to hold data, enabling a memory of a large capacity to be mounted and consuming a sufficiently decreased amount of electric power.
摘要:
Efficient reduction in power consumption is achieved by combinational implementation of a power cutoff circuit technique using power supply switch control and a DVFS technique for low power consumption. A power supply switch section fed with power supply voltage, a circuit block in which a power cutoff is performed by the power supply switch section, and a level shifter are formed in a DEEP-NWELL region formed over a semiconductor substrate. Another power supply switch section fed with another power supply voltage, a circuit block in which a power cutoff is performed by the power supply switch section, and a level shifter are formed in another DEEP-NWELL region formed over the semiconductor substrate. In this arrangement, there arises no possibility of short-circuiting between different power supplies via each DEEP-NWELL region formed over the semiconductor substrate.
摘要:
Efficient reduction in power consumption is achieved by combinational implementation of a power cutoff circuit technique using power supply switch control and a DVFS technique for low power consumption. A power supply switch section fed with power supply voltage, a circuit block in which a power cutoff is performed by the power supply switch section, and a level shifter are formed in a DEEP-NWELL region formed over a semiconductor substrate. Another power supply switch section fed with another power supply voltage, a circuit block in which a power cutoff is performed by the power supply switch section, and a level shifter are formed in another DEEP-NWELL region formed over the semiconductor substrate. In this arrangement, there arises no possibility of short-circuiting between different power supplies via each DEEP-NWELL region formed over the semiconductor substrate.
摘要:
A technique which reduces the influence of external noise such as crosstalk noise in a semiconductor device to prevent a circuit from malfunctioning. A true signal wire and a bar signal wire which are susceptible to noise and part of an input signal line to a level shifter circuit, and shield wires for shielding these signal wires are laid on an I/O cell. Such I/O cells are placed side by side to complete a true signal wire connection and a bar signal wire connection. These wires are arranged in a way to pass over a plurality of I/O cells and are parallel to each other or multilayered.