Abstract:
A developing roller comprising a conductive layer formed around a shaft carries a non-magnetic one-component developer on its outer surface to form a thin film of the developer and contacts a photoconductor drum having an electrostatic latent image borne on its surface whereby the latent image is developed to form a toner image. In one embodiment, the surface of the conductive layer has a DIN 4776 core roughness depth Rk of 0.5-3.5 .mu.m in a circumferential direction of the roller, and the ratio of circumferential Rk to axial Rk is greater than 1.0. In another embodiment, the surface of the conductive layer is provided with microscopic ridges and recesses which are alternately disposed in a rotational direction to define wavy streaks having a longitudinal direction substantially aligned with an axial direction of the roller.
Abstract:
A developing roller (1) includes a highly conductive shaft (2) and a conductive elastic layer (3). When the developing roller carring a one-component developer thereon comes in contact with or in proximity to an image forming body, the developer is supplied from the roller to a surface of the image forming body, thereby forming a visible image on the image forming body surface. The elastic layer (3) has applied to its surface a resin component having an elongation at rupture of less than 10% as measured according to JIS K7113. The developing roller ensures that images of high quality are reproduced without a drop of image density over a long period of time.
Abstract:
Developing roller comprising a conductive mandrel with at least an elastic conductive base layer and a charge providing layer. The base layer is located closer to the mandrel than the charge providing layer. The base layer is roughened before the charge providing layer is applied to the base layer.
Abstract:
A pair of edges that are located at ends as viewed in the widthwise direction of a design pattern are recognized. On the basis of the edge direction in which the paired edges are recognized, edge points on the design pattern are detected as sub-pixels. The widthwise dimension of the design pattern is calculated on the basis of the edge points. In addition, the widthwise dimension of a circuit pattern is calculated at the same position as the widthwise dimension of the design pattern. On the basis of the calculated widthwise dimensions, the semiconductor wafer circuit pattern is checked.
Abstract:
According to one embodiment, a pattern characteristic detection apparatus for a photomask includes a detection-data creating portion, a reference-data creating portion, an extracting portion, a first area-setting portion, a detecting portion and an collecting portion. The detection-data creating portion is configured to create detection data on the basis of an optical image of a pattern formed on a photomask. The reference-data creating portion is configured to create reference data of the pattern. The extracting portion is configured to extract a pattern for pattern characteristic detection and positional information of the extracted pattern. The first area-setting portion is configured to set an area where pattern characteristics are to be detected, and configured to extract a target pattern. The detecting portion is configured to detect pattern characteristics of the target pattern within the area. In addition, the collecting portion is configured to collect the detected pattern characteristics.
Abstract:
A pair of edges that are located at ends as viewed in the widthwise direction of a design pattern are recognized. On the basis of the edge direction in which the paired edges are recognized, edge points on the design pattern are detected as sub-pixels. The widthwise dimension of the design pattern is calculated on the basis of the edge points. In addition, the widthwise dimension of a circuit pattern is calculated at the same position as the widthwise dimension of the design pattern. On the basis of the calculated widthwise dimensions, the semiconductor wafer circuit pattern is checked.
Abstract:
Urea and thiourea derivatives inhibit cell function of the chemokine receptor CCR-3. These compounds offer an effective means for treating a range of diseases thought to be mediated by the CCR-3 receptor. A variety of useful urea and thiourea derivatives can be synthesized using liquid and solid phase synthesis protocols.
Abstract:
According to one embodiment, a pattern characteristic detection apparatus for a photomask includes a detection-data creating portion, a reference-data creating portion, an extracting portion, a first area-setting portion, a detecting portion and an collecting portion. The detection-data creating portion is configured to create detection data on the basis of an optical image of a pattern formed on a photomask. The reference-data creating portion is configured to create reference data of the pattern. The extracting portion is configured to extract a pattern for pattern characteristic detection and positional information of the extracted pattern. The first area-setting portion is configured to set an area where pattern characteristics are to be detected, and configured to extract a target pattern. The detecting portion is configured to detect pattern characteristics of the target pattern within the area. In addition, the collecting portion is configured to collect the detected pattern characteristics.
Abstract:
A conductive coating is described, suitable for coating a developer, charge or transfer roller in a developing apparatus to give a charge providing layer. The coating comprises a conductive polymer in a matrix. A roller is also described, suitable for a developing apparatus comprising, from the centre to the periphery, a conductive mandrel, a conductive elastic base layer and a charge providing layer.
Abstract:
A method and system for imaging an object to be inspected and obtaining an optical image; creating a reference image from design pattern data; preparing an inspection recipe including one or more templates and parameter settings necessary for the inspection; checking the pattern and the template against each other, and selecting the reference image which corresponds to the template; detecting first and second edges in the selected reference image in accordance with the parameter setting using determined coordinates as a reference; detecting first and second edges in the optical image, this optical image corresponds to the selected reference image; and determining an inspection value by acquiring the difference between the line width of the optical image and the reference image using the first edge and second edge of the reference image and the first edge and second edges of the optical image.