摘要:
Compositions and methods are provided in which nanoporous polymeric materials are produced via stable, polymeric template strands having reactive groups that can be used for forming crosslinking functionalities and/or adding thermolabile groups, wherein at least some of the thermolabile groups are thermolyzed to produce voids. The template strands preferably comprise aromatic systems and vicinal keto groups, such as a polybenzil formed from fluorene bisphenol or 3,3'-dihydroxytolane with 4,4'-difluorobenzil. At least some of the reactive groups preferably react using an addition-elimination reaction. Especially preferred thermolabile groups comprise poly(propylene oxide), and especially preferred crosslinkers comprise ethynyl-moiety and tetracyclone moieties.
摘要:
Compositions and methods are provided in which an electrical device is fabricated by incorporating macrocycles in a polymer on a substrate portion of the device, and crosslinking the polymer to form a crosslinked polymer. It is preferred that at least some of the macrocycles are relatively large, including at least six rings in the backbone of a macrocycle. It is also preferred that rings used in forming the macrocycles may be relatively large, preferably having at least six members as in phenyl rings. The intermacrocyclic links can be relatively complex, such as where four macrocycles may be coupled to a single atom or a single phenyl group. In yet other aspects, macrocycles can be heavily conjugated, with more preferred macrocycles having a completely conjugated backbone. In yet other aspects the macrocycles can have backbones with ether, carboxyl, and ethynyl groups, some of which can be used in crosslinking without reliance on an extrinsic crosslinker. In still another aspect, the macrocycles can be fabricated from a bisphenol and a difluoroaromatic compound.
摘要:
The present invention provides adamantane or diamantane compositions that are useful as a dielectric material in microelectronic applications such as microchips.
摘要:
The present invention is directed to low dielectric polymers and to methods of producing these low dielectric constant polymers, dielectric materials and layers, and electronic components. In one aspect of the present invention, an isomeric mixture of thermosetting monomers, wherein the monomers have a core structure and a plurality of arms, is provided, and the isomeric mixture of thermosetting monomers is polymerized, wherein polymerization comprises a reaction of an ethynyl group that is located in at least one arm of a monomer. In yet another aspect of the inventive subject matter, spin-on low dielectric constant materials are formed having a first backbone with an aromatic moiety and a first reactive group, and a second backbone with an aromatic moiety and a second reactive group, wherein the first and second backbone are crosslinked via the first and second reactive groups in a crosslinking reaction preferably without an additional crosslinker, and wherein a cage structure having at least eight (8) atoms is covalently bound to at least one of the first and second backbone.
摘要:
A polymeric network comprises a plurality of monomers that include a cage compound with at least three arms, wherein at least one of the arms has two or more branches, and wherein each of the branches further comprises a reactive group. Monomers in contemplated polymeric networks are covalently coupled to each other via the reactive groups. Particularly contemplated cage compounds include adamantane and diamantane, and especially contemplated branched arms comprise ortho-bis(phenylethynyl)phenyl. Especially contemplated polymeric networks have a dielectric constant of no more than 3.0, and are formed on the surface of a substrate.
摘要:
A low dielectric constant material has a first backbone with an aromatic moiety and a first reactive group, and a second backbone with an aromatic moiety and a second reactive group, wherein the first and second backbones are crosslinked via the first and second reactive groups in a crosslinking reaction without an additional crosslinker, and wherein a cage structure having at least 10 atoms is covalently bound to at least one of the first and second backbone.
摘要:
In a method of producing a low dielectric constant polymer, a thermosetting monomer is provided, wherein the thermosetting monomer has a cage compound or aryl core structure, and a plurality of arms that are covalently bound to the cage compound or core structure. In a subsequent step, the thermosetting monomer is incorporated into a polymer to form the low dielectric constant polymer, wherein the incorporation into the polymer comprises a chemical reaction of a triple bond that is located in at least one of the arms. Contemplated cage compounds and core structures include adamantane, diamantane, silicon, a phenyl group and a sexiphenylene group, while preferred arms include an arylene, a branched arylene, and an arylene ether. The thermosetting monomers may advantageously be employed to produce low-k dielectric material in electronic devices, and the dielectric constant of the polymer can be controlled by varying the overall length of the arms.
摘要:
A low dielectric constant material has a first backbone with an aromatic moiety and a first reactive group, and a second backbone with an aromatic moiety and a second reactive group, wherein the first and second backbones are crosslinked via the first and second reactive groups in a crosslinking reaction without an additional crosslinker, and wherein a cage structure having at least 10 atoms is covalently bound to at least one of the first and second backbone.
摘要:
The present invention provides a composition comprising: (a) dielectric material; and (b) porogen comprising at least two fused aromatic rings wherein each of the fused aromatic rings has at least one alkyl substituent thereon and a bond exists between at least two of the alkyl substituents on adjacent aromatic rings. Preferably, the dielectric material is a composition comprising (a) thermosetting component comprising (1) optionally monomer of Formula I as set forth below and (2) at least one oligomer or polymer of Formula II as set forth below where Q, G, h, I, I, and w are as set forth below and (b) porogen. Preferably, the porogen is selected from the group consisting of unfunctionalized polyacenaphthylene homopolymer, functionalized polyacenaphthylene homopolymer, polyacenaphthylene copolymer, polynorbornene, polycaprolactone, poly(2-vinylnaphthalene), vinyl anthracene, polystyrene, polystyrene derivatives, polysiloxane, polyester, polyether, polyacrylate, aliphatic polycarbonate, polysulfone, polylactide, and blends thereof. The present compositions are particularly useful as dielectric substrate material in microchips, multichip modules, laminated circuit boards, and printed wiring boards.
摘要:
The present invention provides a composition comprising: (a) dielectric material; and (b) porogen comprising at least two fused aromatic rings wherein each of the fused aromatic rings has at least one alkyl substituent thereon and a bond exists between at least two of the alkyl substituents on adjacent aromatic rings. Preferably, the dielectric material is a composition comprising (a) thermosetting component comprising (1) optionally monomer of Formula I as set forth below and (2) at least one oligomer or polymer of Formula II as set forth below where Q, G, h, I, I, and w are as set forth below and (b) porogen. Preferably, the porogen is selected from the group consisting of unfunctionalized polyacenaphthylene homopolymer, functionalized polyacenaphthylene homopolymer, polyacenaphthylene copolymer, polynorbornene, polycaprolactone, poly(2-vinylnaphthalene), vinyl anthracene, polystyrene, polystyrene derivatives, polysiloxane, polyester, polyether, polyacrylate, aliphatic polycarbonate, polysulfone, polylactide, and blends thereof. The present compositions are particularly useful as dielectric substrate material in microchips, multichip modules, laminated circuit boards, and printed wiring boards.