Abstract:
A method of manufacturing resistive memory includes the steps: forming a first implanted stacked structure having a first impurity diffusion layer, a second impurity diffusion layer, and a third impurity diffusion layer in a substrate; etching at least the first implanted stacked structure to form a plurality of second implanted stacked structures, wherein the first impurity diffusion layers are first signal lines; forming a plurality of first insulating layers between the second implanted stacked structures; etching the second implanted stacked structures to form a plurality of third implanted stacked structures, wherein the first signal lines are not etched; forming a plurality of second insulating layers between the third implanted stacked structures; forming a plurality of memory material layers electrically coupled to the third impurity diffusion layers; and forming a plurality of second signal lines perpendicular to the first signal lines and electrically coupled to the memory material layers.
Abstract:
A memory device comprises an array of memory cells each capable of storing multiple bits of data. The memory cells are arranged in memory strings that are connected to a common source line. Each memory cell includes a programmable transistor connected in series with a resistance. The transistor includes a gate dielectric that is switchable between a plurality of different resistance values. The threshold voltage of the transistor changes according to the resistance value of the gate dielectric. Memory states of the memory cells can thus be associated with respective resistance values of the dielectric layer of the transistor.
Abstract:
A method of manufacturing resistive memory includes the steps: forming a first implanted stacked structure having a first impurity diffusion layer, a second impurity diffusion layer, and a third impurity diffusion layer in a substrate; etching at least the first implanted stacked structure to form a plurality of second implanted stacked structures, wherein the first impurity diffusion layers are first signal lines; forming a plurality of first insulating layers between the second implanted stacked structures; etching the second implanted stacked structures to form a plurality of third implanted stacked structures, wherein the first signal lines are not etched; forming a plurality of second insulating layers between the third implanted stacked structures; forming a plurality of memory material layers electrically coupled to the third impurity diffusion layers; and forming a plurality of second signal lines perpendicular to the first signal lines and electrically coupled to the memory material layers.
Abstract:
A memory device comprises an array of memory cells each capable of storing multiple bits of data. The memory cells are arranged in memory strings that are connected to a common source line. Each memory cell includes a programmable transistor connected in series with a resistance. The transistor includes a gate dielectric that is switchable between a plurality of different resistance values. The threshold voltage of the transistor changes according to the resistance value of the gate dielectric. Memory states of the memory cells can thus be associated with respective resistance values of the dielectric layer of the transistor.
Abstract:
The technology relates to a damascene word line for a three dimensional array of nonvolatile memory cells. Partly oxidized lines of material such as silicon are made over a plurality of stacked nonvolatile memory structures. Word line trenches are made in the partly oxidized lines, by removing the unoxidized lines from the intermediate parts of the partly oxidized lines, leaving the plurality of oxidized lines at the outer parts of the plurality of partly oxidized lines. Word lines are made in the word line trenches over the plurality of stacked nonvolatile memory structures.
Abstract:
A memory cell comprising: a semiconductor substrate with a surface with a source region and a drain region disposed below the surface of the substrate and separated by a channel region; a tunneling barrier dielectric structure with an effective oxide thickness of greater than 3 nanometers disposed above the channel region; a conductive layer disposed above the tunneling barrier dielectric structure and above the channel region; a charge trapping structure disposed above the conductive layer and above the channel region; a top dielectric structure disposed above the charge trapping structure and above the channel region; and a top conductive layer disposed above the top dielectric structure and above the channel region are described along with devices thereof and methods for manufacturing.
Abstract:
An integrated circuit device includes a substrate including a first region and a second region. A pit is formed in the first region. A stack of active layers alternating with insulating layers is deposited in the pit. The stack includes a particular insulating layer. The particular insulating layer has a first thickness, where a sum of the first thickness, thickness of active layers, and thicknesses of other insulating layers is essentially equal to a depth of the pit. The first thickness is different than the thicknesses of the other insulating layers by an amount within a range of process variations for the depth of the pit, for the thicknesses of the active layers, and for the thicknesses of other insulating layers. The device includes a planarized surface over the first and second regions, where an uppermost one of the active layers has a top surface below the planarized surface.
Abstract:
The technology relates to a damascene word line for a three dimensional array of nonvolatile memory cells. Conductive lines such as silicon are formed over stacked nonvolatile memory structures. Word line trenches separate neighboring ones of the silicon lines. The silicon lines separated by the word line trenches are oxidized, making insulating surfaces in the word line trenches. Word lines are made in the word line trenches.