Abstract:
A memory device comprises an array of memory cells each capable of storing multiple bits of data. The memory cells are arranged in memory strings that are connected to a common source line. Each memory cell includes a programmable transistor connected in series with a resistance. The transistor includes a gate dielectric that is switchable between a plurality of different resistance values. The threshold voltage of the transistor changes according to the resistance value of the gate dielectric. Memory states of the memory cells can thus be associated with respective resistance values of the dielectric layer of the transistor.
Abstract:
A method of manufacturing resistive memory includes the steps: forming a first implanted stacked structure having a first impurity diffusion layer, a second impurity diffusion layer, and a third impurity diffusion layer in a substrate; etching at least the first implanted stacked structure to form a plurality of second implanted stacked structures, wherein the first impurity diffusion layers are first signal lines; forming a plurality of first insulating layers between the second implanted stacked structures; etching the second implanted stacked structures to form a plurality of third implanted stacked structures, wherein the first signal lines are not etched; forming a plurality of second insulating layers between the third implanted stacked structures; forming a plurality of memory material layers electrically coupled to the third impurity diffusion layers; and forming a plurality of second signal lines perpendicular to the first signal lines and electrically coupled to the memory material layers.
Abstract:
A method of manufacturing resistive memory includes the steps: forming a first implanted stacked structure having a first impurity diffusion layer, a second impurity diffusion layer, and a third impurity diffusion layer in a substrate; etching at least the first implanted stacked structure to form a plurality of second implanted stacked structures, wherein the first impurity diffusion layers are first signal lines; forming a plurality of first insulating layers between the second implanted stacked structures; etching the second implanted stacked structures to form a plurality of third implanted stacked structures, wherein the first signal lines are not etched; forming a plurality of second insulating layers between the third implanted stacked structures; forming a plurality of memory material layers electrically coupled to the third impurity diffusion layers; and forming a plurality of second signal lines perpendicular to the first signal lines and electrically coupled to the memory material layers.
Abstract:
A memory device comprises an array of memory cells each capable of storing multiple bits of data. The memory cells are arranged in memory strings that are connected to a common source line. Each memory cell includes a programmable transistor connected in series with a resistance. The transistor includes a gate dielectric that is switchable between a plurality of different resistance values. The threshold voltage of the transistor changes according to the resistance value of the gate dielectric. Memory states of the memory cells can thus be associated with respective resistance values of the dielectric layer of the transistor.
Abstract:
A memory, comprising a metal portion, a first metal layer and second metal oxide layer is provided. The first metal oxide layer is on the metal element, and the first metal oxide layer includes N resistance levels. The second metal oxide layer is on the first metal oxide layer, and the second metal oxide layer includes M resistance levels. The memory has X resistance levels and X is less than the summation of M and N, for minimizing a programming disturbance.
Abstract:
A method of fabricating a semiconductor device is provided. The method comprises: (a) providing a first and a second conductor; (b) providing a conductive layer; (c) forming a part of the conductive layer into a data storage layer by a plasma oxidation process, wherein the data storage layer is positioned between the first and the second conductor.
Abstract:
A method for operating a memory device includes applying a sequence of bias arrangements across a selected metal-oxide memory element to change among resistance states. The sequence of bias arrangements includes a first set of one or more pulses to change the resistance state of the selected metal-oxide memory element from the first resistance state to a third resistance state, and a second set of one or more pulses to change the resistance state of the selected metal-oxide memory element from the third resistance state to the second resistance state.
Abstract:
Metal-oxide based memory devices and methods for operating and manufacturing such devices are described herein. A method for manufacturing a memory device as described herein comprises forming a metal-oxide memory element, and applying an activating energy to the metal-oxide memory element. In embodiments the activating energy can be applied by applying electrical and/or thermal energy to the metal-oxide material.