摘要:
This invention relates to a method of fabrication used for semiconductor integrated circuit devices, and more specifically, to improve the photolithography processing window of a multi-layered dual damascene process by using a dielectric anti-reflective coating, DARC, comprised of multiple layers of silicon oxynitride, SiON, with varying k, dielectric constant values and thickness, to reduce reflectivity and improve light absorption. By varying both the thickness and the dielectric constant of the layers, the optical properties of light absorption, refractive indices, and light reflection are optimized.
摘要:
The invention provides a semiconductor device. A buried layer is formed in a substrate. A first deep trench contact structure is formed in the substrate. The first deep trench contact structure comprises a conductor and a liner layer formed on a sidewall of the conductor. A bottom surface of the first deep trench contact structure is in contact with the buried layer.
摘要:
A multiple layer metallurgy, spin-on-glass multilayer metallurgy structure and method for making such structure for a one micrometer or less feature size integrated circuit with substantially free field inversion on a semiconductor substrate having a pattern of device regions therein. A passivation layer is located over the surfaces of the patterns. A pattern of openings are made through the passivation layer to at least some of the device regions which include source/drain regions. A patterned first metallurgy layer is in contact with the pattern of openings. A first via dielectric layer is located over the pattern of first metallurgy layer. A silicon-rich barrier dielectric layer is located over the first layer. A cured spin-on-glass layer is over the barrier layer. A silicon oxide second via dielectric layer is over the spin-on-glass layer. A pattern of openings is in the second via layer, spin-on-glass layer, barrier layer and first via layer. A patterned second metallurgy layer is in contact with the pattern of openings to make electrical contact with the first metallurgy layer wherein the multilevel metallurgy integrated circuit with substantially free field inversion is completed.
摘要:
A cobalt silicide process having a titanium-rich/titanium nitride capping layer to improve junction leakage is described. Semiconductor device structures to be silicided are formed in and on a semiconductor substrate. A cobalt layer is deposited overlying the semiconductor device structures. A titanium-rich/titanium nitride capping layer is deposited overlying the cobalt layer. Thereafter, a cobalt silicide layer is formed on the semiconductor device structures. The titanium-rich/titanium nitride capping layer and an unreacted portion of the cobalt layer are removed to complete fabrication of the integrated circuit device.
摘要:
A method of fabricating a node contact opening is described. A dielectric layer is formed on a substrate. A first conductive layer is formed on the dielectric layer. The first conductive layer is etched to form a trapezoidally cross-sectioned opening exposing a portion of the dielectric layer. The dielectric layer exposed by the trapezoidally cross-sectioned opening is etched to form a node contact opening in the dielectric layer exposing a part the substrate. A second conductive layer is formed to fill the node contact opening and in contact with the conductive layer.
摘要:
A method for forming multiple layer metallurgy, spin-on-glass multilayer metallurgy for a one micrometer or less feature size integrated circuit with substantially free field inversion, that is the positive charge between the first via layer and the SOG is described. A semiconductor substrate having a pattern of field effect device source/drain regions therein with a pattern of gate dielectric and gate electrode structures associated therewith and a pattern of field isolation structures at least partially within semiconductor substrate electrically separating certain of these source/drain regions from one another are provided. A passivation layer is formed over the surfaces of said patterns. Then the multilayer metallurgy is formed thereover by opening a pattern of openings through the passivation layer to at least some of the source/drain regions, depositing and patterning a first metallurgy layer in contact with the pattern of openings, forming a first via dielectric layer over the pattern of first metallurgy layer, exposing the first silicon oxide via dielectric layer to a nitrogen plasma, forming a spin-on-glass layer over the via dielectric layer and curing the layer, forming a second via dielectric layer over the spin-on-glass layer, forming a pattern of openings in the second via layer, the spin-on-glass layer, and the first via layer, and depositing and patterning a second metallurgy layer through the openings to make electrical contact with the first metallurgy layer.
摘要:
The invention provides a semiconductor device. A buried layer is formed in a substrate. A first deep trench contact structure is formed in the substrate. The first deep trench contact structure comprises a conductor and a liner layer formed on a sidewall of the conductor. A bottom surface of the first deep trench contact structure is in contact with the buried layer.
摘要:
A lateral diffused metal oxide semiconductor transistor is disclosed. A p-type bulk is disposed on a substrate. An n-type well region is disposed in the p-type bulk. A plurality of field oxide layers are disposed on the p-type bulk and the n-type well region. A gate structure is disposed on a portion of the p-type bulk and one of the plurality of field oxide layers. At least one deep trench isolation structure is disposed in the p-type bulk and adjacent to the n-type well region.
摘要:
The invention teaches the creation of borderless contact holes by using multiple layers of overlying dielectric, having different, interdependent etch rates, that function as etch stop layers for the creation of the borderless contact holes through a layer of overlying dielectric.
摘要:
The invention provides a lateral double-diffused metal oxide semiconductor (LDMOS). The pre-metal dielectric layer (PMD) of the LDMOS is a silicon rich content material. Additionally, the inter-layer dielectric layer (ILD), inter-metal dielectric layer (IMD), or protective layer of the LDMOS may be formed of a silicon rich content material.