摘要:
Disclosed is an inorganic electroluminescent device. The inorganic electroluminescent device comprises a hole transport layer, a light-emitting layer, an inorganic electron transport layer and an electron injecting electrode sequentially formed on a hole injecting electrode wherein an insulating layer is formed between the electron injecting electrode and the inorganic electron transport layer.Further disclosed are a method for fabricating the electroluminescent device and an electronic device comprising the electroluminescent device.The inorganic electroluminescent device achieves uniform light emission from the entire light-emitting surface of the device, resulting in an improvement in the reliability and stability of the device. The inorganic electroluminescent device is suitable for use in the manufacture of electronic devices, including display devices, illuminators and backlight units.
摘要:
Disclosed is a method for producing core-shell nanowires in which an insulating film is previously patterned to block the contacts between nanowire cores and nanowire shells. According to the method, core-shell nanowires whose density and position is controllable can be produced in a simple manner. Further disclosed are nanowires produced by the method and a nanowire device comprising the nanowires. The use of the nanowires leads to an increase in the light emitting/receiving area of the device. Therefore, the device exhibits high luminance/efficiency characteristics.
摘要:
A quantum dot electroluminescent device that includes a substrate, a quantum dot light-emitting layer disposed on the substrate, a first electrode which injects charge carriers into the quantum dot light-emitting layer, a second electrode which injects charge carriers, which have an opposite charge than the charge carriers injected by the first electrode, into the quantum dot light-emitting layer, a hole transport layer disposed between the first electrode and the quantum dot light-emitting layer, and an electron transport layer disposed between the second electrode and the quantum dot light-emitting layer, wherein the quantum dot light-emitting layer has a first surface in contact with the hole transport layer and a second surface in contact with an electron transport layer, and wherein the first surface has an organic ligand distribution that is different from an organic ligand distribution of the second surface.
摘要:
Disclosed is a light-emitting device using a transistor structure, including a substrate, a first gate electrode, a first insulating layer, a source electrode, a drain electrode, and a light-emitting layer formed between the source electrode and the drain electrode in a direction parallel to these electrodes. In the light-emitting device using the transistor structure, it is possible to adjust the mobility of electrons or holes and to selectively set a light-emitting region through the control of the magnitude of voltage applied to the gate electrode, thus increasing the lifespan of the light-emitting device, facilitating the manufacturing process thereof, and realizing light-emitting or light-receiving properties having high efficiency and high purity.
摘要:
Disclosed herein is a quantum dot optical device, including: a substrate; a hole injection electrode; a hole transport layer; a quantum dot luminescent layer; an electron transport layer; and an electron injection electrode, wherein a light-emitting surface of the device has a periodical projection structure.
摘要:
Disclosed are an inorganic electroluminescent diode and a method of fabricating the same. Specifically, this invention provides an inorganic electroluminescent diode, which includes a semiconductor nanocrystal layer formed of inorganic material, an electron transport layer or a hole transport layer formed on the semiconductor nanocrystal layer using amorphous inorganic material, and a hole transport layer or an electron transport layer formed beneath the semiconductor nanocrystal layer using inorganic material, and also provides a method of fabricating such an inorganic electroluminescent diode. According to the method of fabricating the inorganic electroluminescent diode of this invention, an inorganic electroluminescent diode can be fabricated while maintaining the properties of luminescent semiconductor material of the semiconductor crystal layer, and also an inorganic electroluminescent diode which is stably operated and has high luminescent efficiency can be provided.
摘要:
A light-emitting device including a semiconductor nanocrystal layer and a method for producing the light-emitting device are provided. The light-emitting device includes a semiconductor nanocrystal layer whose voids are filled with a filling material. According to the light-emitting device, since voids formed between nanocrystal particles of the semiconductor nanocrystal layer are filled with a filling material, the occurrence of a current leakage through the voids is minimized, which enables the device to have extended service life, high luminescence efficiency, and improved stability.
摘要:
A nanodot electroluminescent diode is disclosed. The nanodot electroluminescent diode comprises a lower electrode, an upper electrode, and unit cells interposed between the electrodes, wherein the unit cells comprise a quantum dot electroluminescent layer and also include an organic layer and/or an inorganic layer in addition to the quantum dot electroluminescent layer. The disclosed nanodot electroluminescent diode provides high efficiency, stability, and high luminance, and mixed colors, multi-colors, full color, and white electroluminescence can be obtained.
摘要:
Disclosed herein is a quantum dot ink composition for inkjet printing. The quantum dot ink composition comprises a highly viscous polymeric additive. Quantum dots can be ejected by inkjet printing and the concentration of the quantum dots in the quantum dot ink composition can be freely controlled. In addition, the loading amount of the quantum dots can be reduced. Based on these advantages, the quantum dot ink composition can be used as a material for light-emitting layers of a variety of electronic devices. Also disclosed herein is an electronic device fabricated using the quantum dot ink composition.