Abstract:
A light emitting structure includes lower and upper semiconductor layers having different conductive types, and an active layer disposed between the lower and upper semiconductor layers. The light emitting structure is provided on the substrate. A first electrode layer provided on the upper semiconductor layer includes a first adhesive layer and a first bonding layer overlapping each other. A reflective layer is not provided between the first adhesive layer and the first bonding layer.
Abstract:
A light emitting device includes a substrate, light emitting cells, each of the light emitting cells including a light emitting structure including lower and upper semiconductor layers, an upper electrode, and a lower electrode, a conductive interconnection layer electrically connecting a lower electrode of a first one of the light emitting cells and an upper electrode of a second one of the light emitting cells, and a current blocking layer disposed to extend from between the upper electrode and the upper semiconductor layer, wherein each light emitting cell further includes a conductive layer arranged to electrically connect the upper electrode of the second light emitting cell to the upper semiconductor layer of the second light emitting cell.
Abstract:
A light emitting device includes a substrate, light emitting cells, each of the light emitting cells including a light emitting structure including lower and upper semiconductor layers, an upper electrode, and a lower electrode, a conductive interconnection layer electrically connecting a lower electrode of a first one of the light emitting cells and an upper electrode of a second one of the light emitting cells, and a current blocking layer disposed to extend from between the upper electrode and the upper semiconductor layer, wherein each light emitting cell further includes a conductive layer arranged to electrically connect the upper electrode of the second light emitting cell to the upper semiconductor layer of the second light emitting cell.
Abstract:
A light emitting device includes a substrate, a plurality of light emitting cells separated from each other and disposed on the substrate, and a plurality of conductive interconnection layers electrically connecting two neighboring light emitting cells. Each light emitting cell includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer, a first electrode, a second electrode, and an etching area. The light emitting structure further includes a first side surface and a second side surface, and if a width between the first side surface and the second side surface is defined as W, the second electrode is disposed in an area between a position separated from the first side surface by 1 5 W and a position separated from the first side surface of the light emitting structure by 1 2 W .
Abstract:
A light emitting device includes a substrate, light emitting cells, each of the light emitting cells including a light emitting structure including lower and upper semiconductor layers, an upper electrode, and a lower electrode, a conductive interconnection layer electrically connecting a lower electrode of a first one of the light emitting cells and an upper electrode of a second one of the light emitting cells, and a current blocking layer disposed to extend from between the upper electrode and the upper semiconductor layer, wherein each light emitting cell further includes a conductive layer arranged to electrically connect the upper electrode of the second light emitting cell to the upper semiconductor layer of the second light emitting cell.
Abstract:
A light emitting device includes a substrate, a plurality of light emitting cells separated from each other and disposed on the substrate, and a plurality of conductive interconnection layers electrically connecting two neighboring light emitting cells. Each light emitting cell includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer, a first electrode, a second electrode, and an etching area. The light emitting structure further includes a first side surface and a second side surface, and if a width between the first side surface and the second side surface is defined as W, the second electrode is disposed in an area between a position separated from the first side surface by 1 5 W and a position separated from the first side surface of the light emitting structure by 1 2 W .
Abstract:
Disclosed is a light emitting device including a light emitting structure including a plurality of light emitting regions comprising a first semiconductor layer, an active layer and a second semiconductor layer, a first distributed bragg reflective layer disposed on the light emitting regions, a first electrode unit disposed on the first semiconductor layer in one of the light emitting regions, a second electrode unit disposed on the second semiconductor layer in another of the light emitting regions, an intermediate pad disposed on the first semiconductor layer or the second semiconductor layer in at least still another of the light emitting regions, and at least one connection electrode disposed on the first distributed bragg reflective layer such that the connection electrode sequentially connects the light emitting regions in series.
Abstract:
A light emitting device is disclosed. The light emitting device includes a light emitting structure including a first conductive-type semiconductor layer, an active layer, and a second conductive-type semiconductor layer, a light-transmissive conductive layer disposed on the second conductive-type semiconductor layer and having a plurality of open regions through which the second conductive-type semiconductor layer is exposed, and a second electrode disposed on the light-transmissive conductive layer so as to extend beyond at least one of the open regions, wherein the second electrode contacts the second conductive-type semiconductor layer in the open regions and contacts the light-transmissive conductive layer in regions excluding the open regions.
Abstract:
A light emitting structure includes lower and upper semiconductor layers having different conductive types, and an active layer disposed between the lower and upper semiconductor layers. The light emitting structure is provided on the substrate. A first electrode layer provided on the upper semiconductor layer includes a first adhesive layer and a first bonding layer overlapping each other. A reflective layer is not provided between the first adhesive layer and the first bonding layer.
Abstract:
A light emitting structure includes lower and upper semiconductor layers having different conductive types, and an active layer disposed between the lower and upper semiconductor layers. The light emitting structure is provided on the substrate. A first electrode layer provided on the upper semiconductor layer includes a first adhesive layer and a first bonding layer overlapping each other. A reflective layer is not provided between the first adhesive layer and the first bonding layer.