Abstract:
A light-emitting device includes a substrate, first and second electrode pads, first to M-th light-emitting cells arranged in a line in a first direction between the first and second electrode pads, and first to N-th connection wires for electrically connecting the first to M-th light-emitting cells, wherein each of the first to M-th light-emitting cells comprises a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, wherein the first electrode pad is connected to the second conductive semiconductor layer of the first light-emitting cell while the second electrode pad is connected to the first conductive semiconductor layer of the M-th light-emitting cell, and an n-th connection wire electrically connects the first conductive semiconductor layer of an n-th light-emitting cell to the second conductive semiconductor layer of an (n+1)-th light-emitting cell, which are adjacent to each other.
Abstract:
Provided are a light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a substrate, a light emitting structure layer, a second electrode, a first electrode, a contact portion, and a first electrode layer. The first electrode is disposed in the substrate from a lower part of the substrate to a lower part of a first conductive type semiconductor layer in a region under an active layer. The contact portion is wider than the first electrode and makes contact with the lower part of the first conductive type semiconductor layer. The first electrode layer is disposed under the substrate and connected to the first electrode.
Abstract:
A light emitting device according to an embodiment includes a substrate; first to Mth light emitting cells (where M is a positive integer of two or more) which are arranged on the substrate so as to be spaced apart from each other; and first to (M−1)th interconnection wires which electrically connect the first to Mth light emitting cells in series, wherein an mth light emitting cell (where 1≦m≦M) includes a first conductive type semiconductor layer, an active layer and a second conductive type semiconductor layer, which are sequentially arranged on the substrate, and wherein an nth interconnection wire (where 1≦n≦M−1) interconnects the first conductive type semiconductor of the nth light emitting cell with the second conductive type semiconductor of the (n+1)th light emitting cell, and has a plurality of first branch wires which are spaced apart from each other.
Abstract:
A light emitting device includes a substrate, a plurality of light emitting cells separated from each other and disposed on the substrate, and a plurality of conductive interconnection layers electrically connecting two neighboring light emitting cells. Each light emitting cell includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer, a first electrode, a second electrode, and an etching area. The light emitting structure further includes a first side surface and a second side surface, and if a width between the first side surface and the second side surface is defined as W, the second electrode is disposed in an area between a position separated from the first side surface by 1 5 W and a position separated from the first side surface of the light emitting structure by 1 2 W .
Abstract:
Provided is a light emitting device. The light emitting device includes a light emitting structure layer comprising a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer. A first electrode is connected to the first conductive type semiconductor layer and includes first pad, plurality of first bridge portions and plurality of first contact portions. A current spreading layer is on a top surface of the second conductive type semiconductor layer. An insulation layer is on an upper surface of the first conductive type semiconductor layer and a top surface of the current spreading layer. A second electrode is on a top surface of the current spreading layer. The plurality of first bridge portions are extended from the first pad at an acute angle to each other.
Abstract:
Disclosed is a light emitting device including a light emitting structure including a plurality of light emitting regions comprising a first semiconductor layer, an active layer and a second semiconductor layer, a first distributed bragg reflective layer disposed on the light emitting regions, a first electrode unit disposed on the first semiconductor layer in one of the light emitting regions, a second electrode unit disposed on the second semiconductor layer in another of the light emitting regions, an intermediate pad disposed on the first semiconductor layer or the second semiconductor layer in at least still another of the light emitting regions, and at least one connection electrode disposed on the first distributed bragg reflective layer such that the connection electrode sequentially connects the light emitting regions in series.
Abstract:
Disclosed is a light emitting device including: a light emitting structure including a plurality of light emitting regions including a first semiconductor layer, an active layer and a second semiconductor layer; a first electrode unit disposed on the first semiconductor layer in one of the light emitting regions; a second electrode unit disposed on the second semiconductor layer in another of the light emitting regions; an intermediate pad disposed on the second semiconductor layer in at least still another of the light emitting regions; and at least one connection electrode to sequentially connect the light emitting regions in series, wherein the light emitting regions connected in series are divided into 1st to ith light emitting region groups and areas of light emitting regions that belong to different groups are different (where 1
Abstract:
A light emitting device includes a substrate, a plurality of light emitting cells disposed on the substrate to be spaced apart from each other, and a connection wire electrically connecting adjacent ones of the light emitting cells. One of the adjacent light emitting cells includes a plurality of first segments, and the other of the adjacent light emitting cells includes a plurality of second segments respectively facing the first segments. A separation distance is provided between first and second segments facing each other, where each of which has an end contacting the connection wire is greater than a separation distance between first and second segments facing each other, and each of which has an end that does not contact the connection wire.
Abstract:
Disclosed are a light emitting device, a method of manufacturing a light emitting device, a light emitting device package and a lighting system. The light emitting device includes a substrate; a first conductive semiconductor layer on the substrate; an active layer on the first conductive semiconductor layer; a second conductive semiconductor layer on the active layer; a contact layer on the second conductive semiconductor layer; an insulating layer on the contact layer; a first branch electrode electrically connected to the first conductive semiconductor layer; a plurality of first via electrodes connected to the first branch electrode and electrically connected to the first conductive semiconductor layer by passing through the insulating layer; a first pad electrode electrically connected to the first branch electrode; a second pad electrode contacts the contact layer by passing through the insulating layer; a second branch electrode connected to the second pad electrode and disposed on the insulating layer; and a plurality of second via electrodes provided throughprovided through the insulating layer to electrically connect the second branch electrode to the contact layer.
Abstract:
Disclosed are a light emitting device, a method of manufacturing a light emitting device, a light emitting device package and a lighting system. The light emitting device includes a substrate; a first conductive semiconductor layer on the substrate; an active layer on the first conductive semiconductor layer; a second conductive semiconductor layer on the active layer; a contact layer on the second conductive semiconductor layer; an insulating layer on the contact layer; a first branch electrode electrically connected to the first conductive semiconductor layer; a plurality of first via electrodes connected to the first branch electrode and electrically connected to the first conductive semiconductor layer by passing through the insulating layer; a first pad electrode electrically connected to the first branch electrode; a second pad electrode contacts the contact layer by passing through the insulating layer; a second branch electrode connected to the second pad electrode and disposed on the insulating layer; and a plurality of second via electrodes provided through provided through the insulating layer to electrically connect the second branch electrode to the contact layer.