摘要:
A catalyst and process for opening aliphatic cyclic hydrocarbons have been developed. The catalyst comprises a catalytic metal component, a molecular sieve and refractory inorganic oxide component. The molecular sieve is selected from the group consisting of MAPSOs, SAPOs, UZM-8, UZM-8HS, UZM-15, UZM-15HS, UZM-16, UZM-16HS and mixtures thereof. Preferred catalytic metals include platinum, palladium and rhodium. The catalyst may also contain a modifier such as niobium, titanium, or rare earth metals.
摘要:
A catalyst for selectively opening cyclic paraffins has been developed. The catalyst comprises a Group VIII metal, such as platinum, a modifier component, such as niobium or ytterbium, a molecular sieve, such as UZM-16 and a refractory inorganic oxide such as alumina. The Group VIII metal and modifier component are preferably deposited on the refractory inorganic oxide. A process for using the catalyst is also disclosed.
摘要:
A process for selectively opening cyclic paraffins (naphthenic rings) with substantially no subsequent cracking of the acyclic product has been developed. The process comprises contacting a cyclic paraffin feedstream with a catalyst at ring opening conditions to produce an acyclic paraffin product. The catalyst comprises a Group VIII metal, such as platinum, a modifier component, such as niobium or ytterbium, a molecular sieve, such as UZM-16 and a refractory inorganic oxide such as alumina. The Group VIII metal and modifier component are preferably deposited on the refractory inorganic oxide.
摘要:
A catalyst and process for opening aliphatic cyclic hydrocarbons have been developed. The catalyst comprises a catalytic metal component, a molecular sieve and refractory inorganic oxide component. The molecular sieve is selected from the group consisting of MAPSOs, SAPOs, UZM-8, UZM-8HS, UZM-15, UZM-15HS, UZM-16, UZM-16HS and mixtures thereof. Preferred catalytic metals include platinum, palladium and rhodium. The catalyst may also contain a modifier such as niobium, titanium, or rare earth metals.
摘要:
A catalyst for selectively opening cyclic paraffins has been developed. The catalyst comprises a Group VIII metal, such as platinum, a modifier component, such as niobium or ytterbium, a molecular sieve, such as UZM-16 and a refractory inorganic oxide such as alumina. The Group VIII metal and modifier component are preferably deposited on the refractory inorganic oxide. A process for using the catalyst is also disclosed.
摘要:
A process for cracking a naphtha feedstream to light olefins is presented. The process comprises converting aromatics and naphthenes to paraffins, and separating iso- and normal paraffins using a ring opening reactor and an adsorption separation unit.
摘要:
A sulfur-sensitive catalyst which has been deactivated by accumulating sulfur on the catalyst is desulfurized by contact with ammonia at high temperature. The technique is particularly effective for reforming catalysts containing a large-pore zeolite which are selective for dehydrocyclization of paraffins. The desulfurization may be combined with regeneration for coke removal from the catalyst.
摘要:
A process for preparing a naphtha reforming catalyst has been developed. The process involves the use of a chelating ligand such as ethylenediaminetetraacetic acid (EDTA). The aqueous solution of the chelating ligand and a tin compound is used to impregnate a support, e.g., alumina extrudates. A platinum-group metal is also an essential component of the catalyst. Rhenium may also be a component. A reforming process using the catalyst has enhanced yield, activity, and stability for conversion of naphtha into valuable gasoline and aromatic products.
摘要:
A process for preparing a naphtha reforming catalyst has been developed. The process involves the use of a chelating ligand such as ethylenediaminetetraacetic acid (EDTA). The aqueous solution of the chelating ligand and a tin compound is used to impregnate a support, e.g., alumina extrudates. A platinum-group metal is also an essential component of the catalyst. Rhenium may also be a component. A reforming process using the catalyst has enhanced yield, activity, and stability for conversion of naphtha into valuable gasoline and aromatic products.