Abstract:
A light-emitting element is provided, including: a light-emitting unit sequentially comprising a first-type semiconductor layer, a light-emitting layer and a second-type semiconductor layer, wherein the light-emitting unit has an opening through the second-type semiconductor layer and the light-emitting layer to expose a portion of the first-type semiconductor layer; a current-conduction layer disposed on the second-type semiconductor layer; a first electrode disposed on the current-conduction layer and exposing a portion thereof; a distributed Bragg reflector disposed on the first electrode and covering the exposed portion of the current-conduction layer; and a second electrode disposed on the distributed Bragg reflector and filling the opening to electrically connect to the first-type semiconductor layer.
Abstract:
A light-emitting diode (LED) chip is disclosed. The chip includes a light-emitting diode and an electrode layer on the light-emitting diode. The electrode layer includes a reflective metal layer. The reflective metal layer includes a first composition and a second composition. The first composition includes aluminum or silver, and the second composition includes copper, silicon, tin, platinum, gold or a combination thereof. The weight percentage of the second composition is greater than 0% and less than 20%.
Abstract:
A light emitting diode (LED) package includes a substrate, at least one micro LED chip, a black material layer, and a transparent material layer. The substrate has a width ranging from 100 micrometers to 1000 micrometers. The at least one micro LED chip is electrically mounted on a top surface of the substrate and has a width ranging from 1 micrometer to 100 micrometers. The black material layer covers the top surface of the substrate to expose the at least one micro LED chip. The transparent material layer covers the at least one micro LED chip and the black material layer.
Abstract:
A light emitting diode includes a first type semiconductor layer, an active layer, a second type semiconductor layer, a patterned electrode layer, a flat layer and a reflective layer. The active layer is disposed on the first type semiconductor layer. The second type semiconductor layer is disposed on the active layer. The second type semiconductor layer includes a first surface and a second surface having a first arithmetic mean roughness. The patterned electrode layer is disposed on the second surface of the second type semiconductor layer. The planarization layer is disposed on the second type semiconductor layer. The planarization layer includes a third surface and a fourth surface. The third surface is in contact with the second surface of the second type semiconductor layer. The fourth surface has a second arithmetic mean roughness that is less than the first arithmetic mean roughness.
Abstract:
The disclosure provides a light-emitting diode and a method for manufacturing the same. The light-emitting diode comprises a N-type metal electrode, a N-type semiconductor layer contacted with the N-type metal electrode, a P-type semiconductor layer, a light-emitting layer interposed between the N-type semiconductor layer and the P-type semiconductor layer, a low-contact-resistance material layer positioned on the P-type semiconductor layer, a transparent conductive layer covered the low-contact-resistance material layer and the P-type semiconductor layer, and a P-type metal electrode positioned on the transparent conductive layer.
Abstract:
A light emitting diode structure includes a first contact electrode, a first insulating layer, a second contact electrode, a second insulating layer, a first barrier layer, a second barrier layer, a first illuminant epitaxial structure, and a second illuminant epitaxial structure. The first contact electrode includes a first protruding portion. The first insulating layer covers the first contact electrode and exposes a top of the first protruding portion. The second contact electrode is located on the first insulating layer and includes a second protruding portion. The second insulating layer covers the second contact electrode and exposes a top of the second protruding portion. The first barrier layer is located on the second insulating layer and is electrically connected to the second contact electrode. The second barrier layer is located on the second insulating layer.
Abstract:
The disclosure provides a light-emitting diode and a method for manufacturing the same. The light-emitting diode comprises a N-type metal electrode, a N-type semiconductor layer contacted with the N-type metal electrode, a P-type semiconductor layer, a light-emitting layer interposed between the N-type semiconductor layer and the P-type semiconductor layer, a low-contact-resistance material layer positioned on the P-type semiconductor layer, a transparent conductive layer covered the low-contact-resistance material layer and the P-type semiconductor layer, and a P-type metal electrode positioned on the transparent conductive layer.
Abstract:
A light emitting diode (LED) package includes a substrate, at least one micro LED chip, a black material layer, and a transparent material layer. The substrate has a width ranging from 100 micrometers to 1000 micrometers. The at least one micro LED chip is electrically mounted on a top surface of the substrate and has a width ranging from 1 micrometer to 100 micrometers. The black material layer covers the top surface of the substrate to expose the at least one micro LED chip. The transparent material layer covers the at least one micro LED chip and the black material layer.
Abstract:
A light emitting diode (LED) package includes a substrate, at least one micro LED chip, a black material layer, and a transparent material layer. The substrate has a width ranging from 100 micrometers to 1000 micrometers. The at least one micro LED chip is electrically mounted on a top surface of the substrate and has a width ranging from 1 micrometer to 100 micrometers. The black material layer covers the top surface of the substrate to expose the at least one micro LED chip. The transparent material layer covers the at least one micro LED chip and the black material layer.
Abstract:
A side-view light emitting laser element includes a support substrate, a first electrode layer, a second electrode layer, and a light emitting multilayer unit sandwiched between the first electrode layer and the second electrode layer. The first electrode layer is disposed on the support substrate. The second electrode layer is disposed on the first electrode layer. The light emitting multilayer unit includes a first semiconductor layer, a second semiconductor layer and an activating layer sandwiched between the first semiconductor layer and the second semiconductor layer. A first refractive index of the first electrode layer and a second refractive index of the second electrode layer are between 1 and 0, respectively.