摘要:
A wetness sensor includes a self-supporting substrate and an electrically conductive trace carried by the substrate. The trace is patterned to provide at least a portion of a tuned RF circuit, which may be disposed on only one side of the substrate and characterized by an impedance or resistance. The trace is not self-supporting. The substrate is adapted to dissolve, swell, or otherwise degrade when contacted by a target fluid. Such degradation produces a drastic change in the operation of the RF circuit, which can be interpreted by a remote reader as a “wet” condition. Contact of the substrate by the target fluid may change the impedance or resistance of the RF circuit by at least a factor of 5, 10, 100, or 1000, and/or may cause the trace to disintegrate so as to provide the RF circuit with an open circuit, and/or may substantially render the RF circuit inoperative.
摘要:
A wetness sensor includes a self-supporting substrate and an electrically conductive trace carried by the substrate. The trace is patterned to provide at least a portion of a tuned RF circuit, which may be disposed on only one side of the substrate and characterized by an impedance or resistance. The trace is not self-supporting. The substrate is adapted to dissolve, swell, or otherwise degrade when contacted by a target fluid. Such degradation produces a drastic change in the operation of the RF circuit, which can be interpreted by a remote reader as a “wet” condition. Contact of the substrate by the target fluid may change the impedance or resistance of the RF circuit by at least a factor of 5, 10, 100, or 1000, and/or may cause the trace to disintegrate so as to provide the RF circuit with an open circuit, and/or may substantially render the RF circuit inoperative.
摘要:
A method of treating porous particles, each porous particle having an external surface and a multiplicity of pores with interior pore surfaces, by contacting the external surface with a hydrophobic agent while causing the interior pore surfaces to remain substantially free of the hydrophobic agent. In certain illustrative embodiments, treating the external surfaces of the porous particles includes exposing the porous particles to at least one of water vapor, methanol vapor, or ethanol vapor; and subsequently exposing the porous particles to a second vapor comprising a reactive organosilane compound which reacts to form the hydrophobic agent. In some particular illustrative embodiments, at least a portion of the external surface of the treated porous particle includes hydrophobic groups, the hydrophobic groups selected from at least one of alkyl or aryl groups optionally substituted with fluorine, and siloxanes having alkyl groups, aryl groups, or combinations thereof.
摘要:
A method of treating porous particles, each porous particle having an external surface and a multiplicity of pores with interior pore surfaces, by contacting the external surface with a hydrophobic agent while causing the interior pore surfaces to remain substantially free of the hydrophobic agent. In certain illustrative embodiments, treating the external surfaces of the porous particles includes exposing the porous particles to at least one of water vapor, methanol vapor, or ethanol vapor; and subsequently exposing the porous particles to a second vapor comprising a reactive organosilane compound which reacts to form the hydrophobic agent. In some particular illustrative embodiments, at least a portion of the external surface of the treated porous particle includes hydrophobic groups, the hydrophobic groups selected from at least one of alkyl or aryl groups optionally substituted with fluorine, and siloxanes having alkyl groups, aryl groups, or combinations thereof.
摘要:
A porous particle with a non-polymeric masking powder on at least a portion of its outer surface is disclosed. The non-polymeric masking powder is not attached to the outer surface of the porous particle with a polymeric binder, and the masked porous particle is hydrophobic. Absorbent articles, for example, diapers and sanitary napkins, and absorbent components of absorbent articles that include a plurality of the masked porous particles are also disclosed. A method of making the masked porous particle is also disclosed.
摘要:
A process for producing gold-based, heterogeneous catalyst systems comprises depositing fine-nanoscale gold onto a nanoparticulate support medium by physical vapor deposition in an oxidizing atmosphere.
摘要:
Electronic articles such as, for example, electroluminescent lamps useful for displays and method of making the same are provided. The electronic articles include a substrate, a conductive element adjacent to the substrate, a high dielectric composite adjacent to the conductive element and an electrically-active layer adjacent to at least a portion of the high dielectric composite. The high dielectric composite includes a polymeric binder and from 1 to 80 volume percent of filler retained in the binder. The filler comprises particles that include an electrically-conducting layer and an insulating layer substantially surrounding the electrically-conducting layer. In some embodiments the binder includes a pressure-sensitive adhesive and the composite has adhesive properties.
摘要:
Electronic articles such as, for example, electroluminescent lamps useful for displays and method of making the same are provided. The electronic articles include a substrate, a conductive element adjacent to the substrate, a high dielectric composite adjacent to the conductive element and an electrically-active layer adjacent to at least a portion of the high dielectric composite. The high dielectric composite includes a polymeric binder and from 1 to 80 volume percent of filler retained in the binder. The filler comprises particles that include an electrically-conducting layer and an insulating layer substantially surrounding the electrically-conducting layer. In some embodiments the binder includes a pressure-sensitive adhesive and the composite has adhesive properties.
摘要:
Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.
摘要:
Highly active, low pressure drop catalyst systems. Catalytically active material is provided on at least a portion of the channel sidewalls of a body comprising one or more flow-through channels. The channel sidewalls preferably bear a charge, e.g., an electrostatic or electret charge, to help adhere the catalytically active material to the sidewall. The catalytically active material preferably includes gold provided on a particulate support, and PVD techniques are used to deposit catalytically active gold onto the support. Optionally, the gold-bearing particulates may be charged as well in a manner to facilitate attraction between the particulates and the sidewalls.