摘要:
An adaptive memory system is provided for improving the performance of an external computing device. The adaptive memory system includes a single controller, a first memory type (e.g., Static Random Access Memory or SRAM), a second memory type (e.g., Dynamic Random Access Memory or DRAM), a third memory type (e.g., Flash), an internal bus system, and an external bus interface. The single controller is configured to: (i) communicate with all three memory types using the internal bus system; (ii) communicate with the external computing device using the external bus interface; and (iii) allocate cache-data storage assignment to a storage space within the first memory type, and after the storage space within the first memory type is determined to be full, allocate cache-data storage assignment to a storage space within the second memory type.
摘要:
An adaptive memory system is provided for improving the performance of an external computing device. The adaptive memory system includes a single controller, a first memory type (e.g., Static Random Access Memory or SRAM), a second memory type (e.g., Dynamic Random Access Memory or DRAM), a third memory type (e.g., Flash), an internal bus system, and an external bus interface. The single controller is configured to: (i) communicate with all three memory types using the internal bus system; (ii) communicate with the external computing device using the external bus interface; and (iii) allocate cache-data storage assignment to a storage space within the first memory type, and after the storage space within the first memory type is determined to be full, allocate cache-data storage assignment to a storage space within the second memory type.
摘要:
An adaptive memory system is provided for improving the performance of an external computing device. The adaptive memory system includes a single controller, a first memory type (e.g., Static Random Access Memory or SRAM), a second memory type (e.g., Dynamic Random Access Memory or DRAM), a third memory type (e.g., Flash), an internal bus system, and an external bus interface. The single controller is configured to: (i) communicate with all three memory types using the internal bus system; (ii) communicate with the external computing device using the external bus interface; and (iii) allocate cache-data storage assignment to a storage space within the first memory type, and after the storage space within the first memory type is determined to be full, allocate cache-data storage assignment to a storage space within the second memory type.
摘要:
An adaptive memory system is provided for improving the performance of an external computing device. The adaptive memory system includes a single controller, a first memory type (e.g., Static Random Access Memory or SRAM), a second memory type (e.g., Dynamic Random Access Memory or DRAM), a third memory type (e.g., Flash), an internal bus system, and an external bus interface. The single controller is configured to: (i) communicate with all three memory types using the internal bus system; (ii) communicate with the external computing device using the external bus interface; and (iii) allocate cache-data storage assignment to a storage space within the first memory type, and after the storage space within the first memory type is determined to be full, allocate cache-data storage assignment to a storage space within the second memory type.
摘要:
An adaptive memory system is provided for improving the performance of an external computing device. The adaptive memory system includes a single controller, a first memory type (e.g., Static Random Access Memory or SRAM), a second memory type (e.g., Dynamic Random Access Memory or DRAM), a third memory type (e.g., Flash), an internal bus system, and an external bus interface. The single controller is configured to: (i) communicate with all three memory types using the internal bus system; (ii) communicate with the external computing device using the external bus interface; and (iii) allocate cache-data storage assignment to a storage space within the first memory type, and after the storage space within the first memory type is determined to be full, allocate cache-data storage assignment to a storage space within the second memory type.
摘要:
An adaptive memory system is provided for improving the performance of an external computing device. The adaptive memory system includes a single controller, a first memory type (e.g., Static Random Access Memory or SRAM), a second memory type (e.g., Dynamic Random Access Memory or DRAM), a third memory type (e.g., Flash), an internal bus system, and an external bus interface. The single controller is configured to: (i) communicate with all three memory types using the internal bus system; (ii) communicate with the external computing device using the external bus interface; and (iii) allocate cache-data storage assignment to a storage space within the first memory type, and after the storage space within the first memory type is determined to be full, allocate cache-data storage assignment to a storage space within the second memory type.
摘要:
Structures and methods for positioning heat sinks in contact with electronic devices are described herein. In one embodiment, a structure for holding a heat sink in contact with an electronic device in accordance with one aspect of the invention includes an electronic device holding portion and a heat sink holding portion. The electronic device holding portion is configured to support the electronic device. The heat sink holding portion is configured to position the heat sink in contact with the electronic device. The structure further includes a spring holding portion configured to support a coil spring in transverse compression. When transversely compressed, the coil spring presses the heat sink against the electronic device with a uniform, or at least approximately uniform, pressure that enables the heat sink to efficiently conduct heat away from the electronic device without damaging the device.
摘要:
The field of the manufacture of electronic components, specifically to manufacturing flexible conductive strips having contact pads thereon, wherein a first set of alignment marks are provided on a substrate. Using the first set of alignment marks, several electronic components are formed in selected positions on the substrate. The electronic components may be formed in various groups, with a first group being formed using a first mask then, subsequent groups being formed using subsequent masks. Each of the respective masks are aligned with the first set of alignment marks in order to position the electronic components formed using the masks at the desired locations on the substrate. A second set of alignment marks are produced using the same mask as a set of electronic components that are located on the substrate. Subsequently, when a different set of features is produced, it is positioned using the second set of alignment marks located on the individual parts. Thus, tolerances can be achieved that would normally be possible only in the manufacture of individual parts, while still obtaining the advantages of the economies of scale possible by making many parts on a large sheet.
摘要:
The flexible connector for high density circuit applications comprises a multilayer flexible substrate upon which are formed a plurality of contact pads, in a density required by a particular application. This density may exceed two hundred contact pads per square inch. Contact pads of similar size and configuration are formed on the surface of another device, i.e., circuit board, and provision made to align the contact pads of the connector with those of the circuit board. Micro-pads are formed on the surface of the contact pads on the connector such, that when the connector is brought into contact with the circuit board, and sufficient pressure is applied, the micro-pads make actual electrical contact with the pads of the circuit board. Since the total surface area in contact, namely the sum of the surface areas of the micro-pads, is a small fraction of the total area of the connector, a large pressure is provided at the electrical contact interface even when low pressure is provided to the connector as a whole.
摘要:
A data center inside a shipping container having computing equipment and associated devices located in its interior. The data center includes computing equipment, an internal network, an external network, power supplies, a lighting system, and a controller. The power supplies and the lighting system connect to the controller, which in turn connects to the internal network. The computing equipment connects to the power supplies. A remote computing device connected to the external network communicates with the controller through the internal network. The remote computing device receives information from the controller and instructs the controller to selectively energize and de-energize the power supplies and the lighting system. The controller may have a user interface configured to display data associated with the computing equipment and other devices and systems located within the container.