摘要:
A color palette selects a master clock from plural clock signals received at clock input terminals in response to a master clock selection control word received at control data terminals. A circuit forms a plurality of divided down clock signals from selected divide ratios of the master clock. A circuit selects a shift clock from among the divided down clock signals in response to at least some bits of an output clock selection control word received at the control data terminals. A circuit selectively enables and disables the shift clock in response to blanking data. A circuit selects a video clock from among the divided down clock signals in response to at least some bits of the output clock selection control word. A circuit synchronizes multiple bit words of color code received at color code input terminals with the master clock. A circuit outputs at least one memory recall address in response to receiving each multiple bit word of color code. A circuit stores color data words in a plurality of data storage locations, having associated memory recall addresses, and outputs a color data word upon receipt of an associated memory recall address. A circuit selectively writes color data words into these plural locations. A circuit synchronizes video control signals received at video control terminals with the master clock and provides the blanking data. A circuit selects for output between said color data words and true color data words received at said color code input terminals.
摘要:
Test circuitry (90) is provided which includes a multiplexer (118) for selectively receiving multiple bit control words defining test functions to be executed by said test circuitry and for outputting data from said test circuitry. A plurality of digital data inputs (96) are provided for receiving multiple bit words of digital data and a plurality of analog data inputs (98) are provided for receiving analog data. A register (120) is coupled to multiplexer (118) for storing a one of the multiple bit words received by multiplexer (118). Control circuitry (122) is coupled to register (120) for controlling execution of the test function defined by the control word being held in register (120). First test circuitry (112) is coupled to digital data inputs (96) and control circuitry (122) for passing digital data words received at digital data inputs (96) to multiplexer (118) for output in response to a first control word of said control words being held in register (120).
摘要:
An integrated circuit capacitor has a semiconductor die and a plurality of field effect transistors fabricated on the die and having gates, sources and drains. The gates are connected to each other as one side of the capacitor. The sources and drains are connected together as another side of the capacitor. A color palette has a die with circuitry including a dot clock buffer with transistors connected to supply rails and the integrated circuit capacitor having a plurality of the parallel-connected field effect transistors connected across the supply rails. The dot clock buffer has an output distributed directly to the rest of the circuitry. Other capacitors, buffers, systems and methods are also disclosed.
摘要:
In one aspect, there is provided a handheld vision tester comprising a display, cursor control, interface port, and camera. The display delivers a series of images making up vision tests to a user who interacts with the vision tests by using the display and cursor control of the handheld vision tester. The camera verifies the user is taking the vision tests. The results of the vision tests are stored in the handheld communication device. The interface port allows for communication of the stored results of the vision tests with external devices. In another aspect, there is provided a calibration system for the handheld vision tester. The calibration system includes a stand to hold the handheld vision tester and a reflective surface substantially parallel to a display of the handheld vision tester.
摘要:
A binocular viewer, a method of measuring and training vision that uses a binocular viewer and a vision measurement and training system that employs a computer to control the binocular viewer. In one embodiment, the binocular viewer has left and right display elements and comprises: (1) a variable focal depth optical subsystem located in an optical path between the display elements and a user when the user uses the binocular viewer and (2) a control input coupled to the left and right display elements and the variable focal depth optical subsystem and configured to receive control signals operable to place images on the left and right display elements and vary a focal depth of the variable focal depth optical subsystem. In another embodiment, the binocular viewer lacks the variable focal depth optical subsystem, but the images include at least one feature unique to one of the left and right display elements.
摘要:
A MEMS may integrate movable MEMS parts, such as mechanical elements, flexible membranes, and sensors, with the low-cost device package, leaving the electronics and signal-processing parts in the integrated circuitry of the semiconductor chip. The package may be a leadframe-based plastic molded body having an opening through the thickness of the body. The movable part may be anchored in the body and extend at least partially across the opening. The chip may be flip-assembled to the leads to span across the foil, and may be separated from the foil by a gap. The leadframe may be a prefabricated piece part, or may be fabricated in a process flow with metal deposition on a sacrificial carrier and patterning of the metal layer. The resulting leadframe may be flat or may have an offset structure useful for stacked package-on-package devices.
摘要:
A novel Finite Impulse Response filter (FIR) Filter is provided which includes a plurality of multipliers (14-22), a plurality of multiplexers (24-32), and a plurality of sample and hold circuits (34-42). At least two of the sample and hold circuit output signals (1-5) may be multiplexed in a round robin fashion to at least two of the multipliers (14-22). The multipliers may receive as a second input, fixed tap coefficient signals (C.sub.1 -C.sub.5) for multiplication with the multiplexed sample and hold circuit output signals (1-5).
摘要:
A system for driving hard disk drive spindle and actuator motors is disclosed. The system comprises a spindle motor control circuit (120), a spindle motor power circuit (210), an actuator motor control circuit (110), and an actuator motor power circuit (210). The spindle motor control circuit (120) and the actuator motor control circuit (110) are formed on a first substrate (100). The spindle motor power circuit (210) and the actuator motor power circuit (220) are formed on a second substrate (200). The system also includes at least one disk (22) attached to a rotatable spindle (21), a spindle motor (400) for receiving and being energized by the spindle motor power signals, and for controlling the rotation of the spindle (21), a plurality of disk read heads (12) adjacent to the disks (22), and an actuator motor (300) for receiving and being energized by the actuator motor power signals, and for controlling the position of the disk read heads (12).
摘要:
A programmably variable transconductance circuit (10) and method for varying its transconductance includes first and second current control input devices (16, 18), each having an input (17,19) to which a differential input voltage may be applied. A pair of current steering circuits (26, 28, 30, 32) are each connected in series with a respective one of the first and second current control devices (16, 18) for dividing respective currents in the first and second current control devices (16, 18) between a differential output current path (12, 14) and another current flow path, and a programmable voltage source (90) supplying V.sub.CONTROL is connected to control the current division by the current steering circuits (26, 28, 30, 32). The programmable voltage, V.sub.CONTROL, is provided by a programmable current control loop (90), which incorporates a master transconductance circuit, to establish a constant transconductance independently of temperature variations. A dynamically controllable resistance, such as an MOS transistor (24), or the like, is connected between the first and second current control input devices (16, 18), and a second voltage source (V.sub.GATE) is connected to the dynamically controllable resistance (24) to maintain the dynamically controllable resistance (24) at a constant value.
摘要:
A biomedical sensor (20) is formed on a semiconductor substrate (22). Insulated dielectric layers (23, 24) are formed on the face and backside of the semiconductor substrate (22). Metal leads (26, 28) contact the substrate (22) through openings in the dielectric layer (23). The leads (26, 28) are also each connected to a set of interleaved longitudinal contact fingers (27, 29). A pair of contacts (30, 32) are formed on the opposite side of the substrate (22) from the contact figures (27, 29). A conductive biologic sample is placed over the interleaf fingers (27, 29), electrical measurements can be made through backside contacts (30, 32) so resistance measurements can be taken.