Digital random noise generator
    1.
    发明授权
    Digital random noise generator 失效
    数字随机噪声发生器

    公开(公告)号:US06910165B2

    公开(公告)日:2005-06-21

    申请号:US09795899

    申请日:2001-02-28

    IPC分类号: G01R31/28 H03K3/84 G06F11/00

    CPC分类号: H03K3/84 G01R31/2841

    摘要: A system and method for generating random noise for use in testing electronic devices comprises a first random pattern generator circuit for generating first sets of random bit pattern signals; one or more delay devices each receiving a trigger input signal and a random bit pattern signal set for generating in response a respective delay output signal, each delay output signal being delayed in time with respect to a respective trigger signal, a delay time being determined by the bit pattern set received; and, an oscillator circuit device associated with a respective one or more delay devices for receiving a respective delay output signal therefrom and generating a respective oscillating signal, each oscillator signal generated being used to generate artificial random noise for emulating a real noise environment in an electronic device. A second random pattern generator circuit may be provided for generating second sets of random bit pattern signals for receipt by each of the associated oscillator circuit devices in order to frequency adjust in a random manner, each of the oscillator signals.

    摘要翻译: 用于产生用于测试电子设备的随机噪声的系统和方法包括:第一随机模式发生器电路,用于产生第一组随机位模式信号; 每个接收触发输入信号的一个或多个延迟装置和随机位模式信号组,用于响应于相应的延迟输出信号而产生,每个延迟输出信号相对于相应的触发信号在时间上延迟,延迟时间由 接收到位模式集; 以及与相应的一个或多个延迟装置相关联的振荡器电路装置,用于从其接收相应的延迟输出信号并产生相应的振荡信号,所产生的每个振荡器信号用于产生人造随机噪声,以仿真电子中的实际噪声环境 设备。 可以提供第二随机模式发生器电路,用于产生第二组随机位模式信号,以便由每个相关联的振荡器电路装置接收,以便随机地调整每个振荡器信号。

    Multi-port memory device and system for addressing the multi-port memory device

    公开(公告)号:US06594196B2

    公开(公告)日:2003-07-15

    申请号:US09725967

    申请日:2000-11-29

    IPC分类号: G11C800

    摘要: A multi-port memory array is associated with wordlines and bit-lines to perform data read/write operation and has multi-port memory cells each of which includes multiple ports through which the wordlines and bit-lines are provided, multiple transistor devices each of which corresponds to each of the multiple ports and is coupled to a wordline and a bit-line through a corresponding port, each transistor device being gated by a wordline and having a conduction path of which a first end is connected to a bit-line, and a charge storage device commonly connected to a second end of a conduction path of each of the transistor devices, where the charge storage device is charged when any of the plurality of transistor devices is activated. A system for addressing the multi-port memory array includes a conflict detector for detecting a conflict between two or more of the row address signals to generate a conflict control signal corresponding to the conflict detected, a priority logic circuit for performing a logic operation with respect to the request command signals based on a predetermined priority logic to generate prioritized signals, and a selection unit for selecting one of a request command signal and a prioritized signal corresponding to the request command signal in response to the conflict control signal, where a signal selected by the selection unit selects a corresponding one of the row address signals.

    Redundancy structure and method for high-speed serial link
    3.
    发明授权
    Redundancy structure and method for high-speed serial link 失效
    用于高速串行链路的冗余结构和方法

    公开(公告)号:US07447273B2

    公开(公告)日:2008-11-04

    申请号:US10708240

    申请日:2004-02-18

    IPC分类号: H01L21/82 H01P1/10

    CPC分类号: H04L1/22 H04L25/029 H04L25/08

    摘要: An integrated circuit is provided having a plurality of data transmitters, including a plurality of default data transmitters for transmitting data from a plurality of data sources and at least one redundancy data transmitter. A plurality of connection elements are provided having a first, low impedance connecting state and having a second, high impedance, disconnecting state. The connection elements are operable to disconnect a failing data transmitter from a corresponding output signal line and to connect the redundancy data transmitter to that output signal line in place of the failing data transmitter. In one preferred form, the connection elements include a fuse and an antifuse. In another form, the connection elements include micro-electromechanical (MEM) switches. The connecting elements preferably present the low impedance connecting state at frequencies which include signal switching frequencies above about 500 MHz.

    摘要翻译: 提供了具有多个数据发送器的集成电路,包括用于从多个数据源发送数据的多个默认数据发送器和至少一个冗余数据发送器。 提供了具有第一低阻抗连接状态并且具有第二高阻抗断开状态的多个连接元件。 连接元件可操作以将故障数据发射器与相应的输出信号线断开连接,并将冗余数据发射器连接到该输出信号线来代替故障数据发射器。 在一个优选形式中,连接元件包括保险丝和反熔丝。 在另一种形式中,连接元件包括微机电(MEM)开关。 连接元件优选地在包括高于约500MHz的信号切换频率的频率处呈现低阻抗连接状态。

    Integrated power solution for system on chip applications
    5.
    发明授权
    Integrated power solution for system on chip applications 有权
    集成电源解决方案,用于片上系统应用

    公开(公告)号:US06629291B1

    公开(公告)日:2003-09-30

    申请号:US09668977

    申请日:2000-09-25

    IPC分类号: G06F1750

    CPC分类号: G06F1/28 G06F17/5045 G11C5/14

    摘要: A centralized power supply system for a multi-system on chip device includes: an external power supply for supplying power to the device; a centralized DC generator macro having generator components for receiving the external power supplied and generating therefrom one or more power supply voltages for use by surrounding system macros provided on the multi-system chip, the centralized DC generator macro further distributing the generated power supply voltages to respective system macros. A noise blocking structure is provided that surrounds the centralized DC generator system and isolates the centralized DC generator system from the surrounding system macros.

    摘要翻译: 一种用于多系统片上设备的集中供电系统包括:用于向设备供电的外部电源; 集中式DC发电机宏,其具有用于接收所提供的外部电力并由其产生的一个或多个电源电压,用于由多系统芯片上提供的周围系统宏使用的发电机组件,集中式DC发电机宏进一步将生成的电源电压分配到 各自的系统宏。 提供了围绕集中式DC发电机系统的隔离结构,并将集中式DC发电机系统与周围系统宏隔离开来。

    Semiconductor memory system having a data clock system for reliable high-speed data transfers
    6.
    发明授权
    Semiconductor memory system having a data clock system for reliable high-speed data transfers 失效
    具有用于可靠的高速数据传输的数据时钟系统的半导体存储器系统

    公开(公告)号:US06614714B2

    公开(公告)日:2003-09-02

    申请号:US10055149

    申请日:2002-01-22

    IPC分类号: G11C818

    摘要: A data clock system for a semiconductor memory system is provided for performing reliable high-speed data transfers. The semiconductor memory system includes a plurality of data banks configured for storing data, the plurality of data banks in operative communication with a plurality of first data paths, each first data path in operative communication with a second data path. The data clock system includes a first clock path receiving a clock signal during a data transfer operation for transferring data between one data bank of the plurality of data banks and the second data path via one of the plurality of first data paths; and a second clock path receiving the clock signal from the first clock path and propagating the clock signal along therethrough, the second clock path including at least one clock driver. The transfer of data between the one of the plurality of first data paths and the second data path occurs upon receipt of the clock signal by the at least one clock driver. A method for propagating a clock signal in a semiconductor memory system is also provided for performing reliable high-speed data transfers. In the inventive system and method the clock signal is delayed during propagation along the first clock path and the second clock path by approximately the same amount of time regardless if the at least one clock driver is positioned proximate a far end of the second clock path or the at least one clock driver is positioned proximate a near end of the second clock path.

    摘要翻译: 提供了一种用于半导体存储器系统的数据时钟系统,用于执行可靠的高速数据传输。 半导体存储器系统包括被配置为存储数据的多个数据库,所述多个数据库与多个第一数据路径可操作地通信,每个第一数据路径与第二数据路径可操作地通信。 数据时钟系统包括在数据传输操作期间接收时钟信号的第一时钟路径,用于经由多个第一数据路径中的一个数据路径在多个数据库的一个数据组和第二数据路径之间传送数据; 以及第二时钟路径,从第一时钟路径接收时钟信号并且沿着其传播时钟信号,第二时钟路径包括至少一个时钟驱动器。 在所述至少一个时钟驱动器接收到所述时钟信号之后,发生所述多个第一数据路径中的一个数据路径和所述第二数据路径之间的数据传送。 还提供了用于在半导体存储器系统中传播时钟信号的方法,用于执行可靠的高速数据传输。 在本发明的系统和方法中,时钟信号在沿着第一时钟路径和第二时钟路径传播期间被延迟大约相同的时间量,而不管至少一个时钟驱动器位于第二时钟路径的远端附近, 至少一个时钟驱动器位于第二时钟路径的近端附近。

    Micro-cell redundancy scheme for high performance eDRAM
    8.
    发明授权
    Micro-cell redundancy scheme for high performance eDRAM 有权
    用于高性能eDRAM的微单元冗余方案

    公开(公告)号:US06400619B1

    公开(公告)日:2002-06-04

    申请号:US09841950

    申请日:2001-04-25

    IPC分类号: G11C700

    摘要: A new micro-cell redundancy scheme for a wide bandwidth embedded DRAM having a SRAM cache interface. For each bank of micro-cell array units comprising the eDRAM, at least one micro-cell unit is prepared as the redundancy to replace a defected micro-cell within the bank. After array testing, any defective micro-cell inside the bank is replaced with a redundancy micro-cell for that bank. A fuse bank structure implementing a look-up table is established for recording each redundant micro-cell address and its corresponding repaired micro-cell address. In order to allow simultaneous multi-bank operation, the redundant micro-cells may only replace the defective micro-cells within the same bank. When reading data from eDRAM, or writing data to eDRAM, the micro-cell array address is checked against the look-up table to determine whether that data is to be read from or written to the original micro-cell, or the redundant micro-cell. The micro-cell redundancy scheme is a flexible and reliable method for high-performance eDRAM applications.

    摘要翻译: 一种用于具有SRAM缓存接口的宽带宽嵌入式DRAM的新型微小区冗余方案。 对于包括eDRAM的每个微单元阵列单元组,至少一个微单元单元被准备为冗余以替代该单元内的缺陷微单元。 在阵列测试之后,银行内的任何有缺陷的微单元被该银行的冗余微单元替代。 建立实现查找表的熔丝库结构,用于记录每个冗余微小区地址及其对应的修复的微小区地址。 为了允许同时多行操作,冗余微单元可以仅替换同一个存储体内的有缺陷的微单元。 当从eDRAM读取数据或将数据写入eDRAM时,将针对查找表检查微单元阵列地址,以确定该数据是从原始微单元读取还是写入原始微单元, 细胞。 微单元冗余方案是高性能eDRAM应用的灵活可靠的方法。

    Method for fabricating semiconductor devices with different properties using maskless process
    9.
    发明授权
    Method for fabricating semiconductor devices with different properties using maskless process 失效
    使用无掩模工艺制造具有不同特性的半导体器件的方法

    公开(公告)号:US06355531B1

    公开(公告)日:2002-03-12

    申请号:US09634225

    申请日:2000-08-09

    IPC分类号: H01L218236

    摘要: A method is provided for fabricating semiconductor devices having different properties on a common semiconductor substrate. The method includes the steps of (a) forming N openings on the semiconductor substrate, wherein each opening is corresponding to a channel region of each semiconductor device, (b) forming oxide layers of an ith type on surfaces of the N openings, (c) depositing gate conductor material of an ith type over structure of the semiconductor devices, the gate conductor material of the ith type having a gate conductor work-function of an ith type, (d) removing the gate conductor material of the ith type such that a predetermined amount of the gate conductor material of the ith type remains in an ith opening to form a gate conductor material layer of the ith type on top surface in the ith opening and the gate conductor material of the ith type deposited in the structure other than the ith opening is removed, (e) removing the oxide layers of the ith type from openings other than the ith opening, (f) repeating the steps of (a) through (e) from “i=1” to “i=N”, and (g) forming at least one layer on surface of each of N gate conductor material layers in the N openings to form a gate conductor, whereby the N semiconductor devices have N gate conductors, respectively, wherein the N gate conductors have N types of gate conductor work-functions. The semiconductor devices also have channel regions of which doping levels are different from each other by implanting the channel regions with different types of implants.

    摘要翻译: 提供了一种在公共半导体衬底上制造具有不同特性的半导体器件的方法。 该方法包括以下步骤:(a)在半导体衬底上形成N个开口,其中每个开口对应于每个半导体器件的沟道区,(b)在N个开口的表面上形成第i个类型的氧化物层,(c )沉积所述半导体器件的第i型结构的栅极导体材料,所述第i型栅极导体材料具有第i类型的栅极导体功函数,(d)去除所述第i种类型的栅极导体材料,使得 第i个类型的栅极导体材料的预定量保持在第i个开口中,以在第i个开口的顶表面上形成第i型的栅极导体材料层,并且沉积在除第 除去第i个开口,(e)从第i个开口以外的开口除去第i个类型的氧化物层,(f)重复步骤(a)至(e)从“i = 1”到“i = N “,(g)在其上形成至少一层 在N个开口中的N个栅极导体材料层中的每一个的表面形成栅极导体,由此N个半导体器件分别具有N个栅极导体,其中N个栅极导体具有N种类型的栅极导体功函数。 半导体器件还具有通过用不同类型的植入物植入沟道区域而使掺杂水平彼此不同的沟道区域。

    Method and structure for providing improved thermal conduction for silicon semiconductor devices

    公开(公告)号:US07052937B2

    公开(公告)日:2006-05-30

    申请号:US10429758

    申请日:2003-05-05

    IPC分类号: H01L21/44

    摘要: Thermal cooling structures of diamond or diamond-like materials are provided for conducting heat away from semiconductor devices. A first silicon-on-insulator embodiment comprises a plurality of thermal paths, formed after shallow trench and device fabrication steps are completed, which extend through the buried oxide and provide heat dissipation through to the underlying bulk silicon substrate. The thermal conduction path material is preferably diamond which has high thermal conductivity with low electrical conductivity. A second diamond trench cooling structure, formed after device fabrication has been completed, comprises diamond shallow trenches disposed between the devices and extending through the buried oxide layer. An alternative diamond thermal cooling structure includes a diamond insulation layer deposited over the semiconductor devices in either an SOI or bulk silicon structure. Yet another embodiment comprises diamond sidewalls formed along the device walls in thermal contact with the device junctions to provide heat dissipation through the device junctions to underlying cooling structures. It is also proposed that the foregoing structures, and combinations of the foregoing structures, could be used in conjunction with other known cooling schemes.