摘要:
An integrated circuit system having a plurality of macros is provided. The integrated circuit system includes an external voltage supply input configured for supplying an external voltage to the integrated circuit; and a plurality of internal voltage supply generators, each of the plurality of internal voltage supply generators being connected to a respective macro of the plurality of macros and configured for receiving the external voltage via the external voltage supply input for generating an internal voltage supply for operating its respective macro. Each of the plurality of internal voltage supply generators includes circuitry for generating the internal voltage supply and circuitry for disconnecting at least a portion of its respective macro. The integrated circuit system can be applied to a semiconductor chip to save active or stand-by power. It can also be used to disconnect a defective portion of the chip and optionally replace it with a non-defective portion of the chip.
摘要:
A memory storage system is disclosed. In an exemplary embodiment, the memory storage system includes a plurality of memory storage banks and a cache in communication therewith. Both the plurality of memory storage banks and the cache further include destructive read memory storage elements.
摘要:
A memory storage system includes a plurality of memory storage banks and a cache in communication therewith. Both the plurality of memory storage banks and the cache further include destructive read memory storage elements configured for delayed write back scheduling thereto.
摘要:
A memory storage system is disclosed. In an exemplary embodiment, the memory storage system includes a plurality of memory storage banks and a cache in communication therewith. Both the plurality of memory storage banks and the cache further include destructive read memory storage elements.
摘要:
A memory array architecture employs a full Vdd bitline precharged voltage and a low wordline boost voltage, which is less than Vdd plus the threshold voltage of the access transistor. In a write mode, a first low level of a data bit is almost fully written to a storage element, however a second high level of the data bit is not fully written to the storage element. In a read mode, the first low level of the data bit is fully read out from the storage element, however the second high level of the data bit is not read out by utilizing the access transistor threshold voltage. This allows a sensing signal only with the first voltage level transfer to the Vdd precharged BL. A reference WL is preferably used for generating a reference bitline voltage for a differential Vdd sensing scheme. Alternatively, a single BL digital sensing scheme may be used. Lowering the wordline voltage results in a reduction in power consumption by saving power on Vpp generator and support circuits, and a reduction in the size of the Vpp generator and support circuits, and also eliminates high Vpp voltage related problems such as dielectric breakdown and other reliability concerns while avoiding a complex decoding scheme and saving cost.
摘要:
The speed of memories is increased by trading memory density (or area) for speed (or cycle time). An n by n memory array is used to reduce the memory cycle time by 1/n. For example, if an existing memory cycle time is 6 ns, in order to achieve a 3ns (or n=2) cycle time, a 2 by 2 memory array is used. Or, in order to achieve a 1ns cycle time (or n=6), then a 6 by 6 memory array is used.
摘要:
A short cycle DRAM use a floating wordline, dynamic row decoder and bitline VDD precharge, which improves the array efficiency of the short cycle DRAM (3-6 ns) without compromising its performance. A small size wordline driver circuit is provided to reduce the row size of the short cycle DRAM without compromising row access timing. A dynamic decoding operation is implemented which intentionally allows some of the deselected wordlines to float during row access. A Vdd bitline precharge/sensing technique avoids a detrimental (or positive) coupling effect to the floating wordlines during row accessing. A Vdd data-line (or DQ) precharge for a read operation, and control of incoming data timing avoids a detrimental (or positive) coupling effect for a write operation.
摘要:
An ultra high-speed DDP-SRAM (Dual Dual-Port Static Random Access Memory) cache having a cache speed in approximately the GHz range. This is accomplished by (1) a specially designed dual-port SRAM whose size is slightly larger than that of a conventional single port SRAM, and (2) the use of a dual dual-port SRAM architecture which doubles its speed by interleaved read and write operations. A first embodiment provides a 6-T (transistor) all nMOS dual-port SRAM cell. A second embodiment provides a dual port 7T-SRAM cell which has only one port for write, and both ports for read.
摘要:
An integrated redundancy eDRAM architecture system for an embedded DRAM macro system having a wide data bandwidth and wide internal bus width is disclosed which provides column and row redundancy for defective columns and rows of the eDRAM macro system. Internally generated column and row addresses of defective columns and rows of each micro-cell block are stored in a memory device, such as a fuse bank, during an eDRAM macro test mode in order for the information to be quickly retrieved during each cycle of eDRAM operation to provide an SRAM-like operation. A column steering circuit steers column redundant elements to replace defective column elements. Redundancy information is either supplied from a SRAM fuse data storage device or from a TAG memory device depending on whether a read or write operation, respectively, is being performed. The integrated redundancy eDRAM architecture system enables data to be sent and received to and from the eDRAM macro system without adding any extra delay to the data flow, thereby protecting data flow pattern integrity.
摘要:
A dynamic random access memory (DRAM) storage device includes a storage cell having a plurality of transistors arranged in a gain cell configuration, the gain cell coupled to a read bitline and a write bitline. A dummy cell is configured as a clamping device for the read bitline, wherein the dummy cell opposes a read bitline voltage swing during a read operation of the storage cell.