摘要:
An LED control circuit for controlling an LED illuminating device is disclosed. The LED illuminating device includes at least serially connected load group, and the LED control circuit includes: a conversion module configured to convert an input voltage to an output voltage, and to output a working current as a sample current; a reference voltage generating module configured to generate a reference voltage; a control module configured to compare a sample voltage corresponding to the sample current with the reference voltage, and to output a control signal to the conversion module according to a comparison result; and a load short circuit module including a plurality of switches each connected in parallel with respective load group for performing a short circuit control on respective load group in response to a switching signal. A controlling method of such LED control circuit is also disclosed.
摘要:
An LED control circuit for controlling an LED illuminating device is disclosed. The LED illuminating device includes at least serially connected load group, and the LED control circuit includes: a conversion module configured to convert an input voltage to an output voltage, and to output a working current as a sample current; a reference voltage generating module configured to generate a reference voltage; a control module configured to compare a sample voltage corresponding to the sample current with the reference voltage, and to output a control signal to the conversion module according to a comparison result; and a load short circuit module including a plurality of switches each connected in parallel with respective load group for performing a short circuit control on respective load group in response to a switching signal. A controlling method of such LED control circuit is also disclosed.
摘要:
The present invention discloses an LED driving method and an LED driving system, the method comprising: generating a PWM control signal with a PWM dimming signal; and controlling a PWM DC/DC converter with the PWM control signal, so as to generate a driving voltage of the LED.
摘要翻译:本发明公开了一种LED驱动方法和LED驱动系统,该方法包括:利用PWM调光信号产生PWM控制信号; 以及利用所述PWM控制信号来控制PWM DC / DC转换器,以产生所述LED的驱动电压。
摘要:
A dimmable LED driver adapted to be operated with a dimmer that is configured to generate a predetermined conductive angle, wherein the dimmable LED driver comprises: a rectifier configured to convert an alternating current output by the dimmer to a direct current, a buck PFC block configured to adjust an output voltage of the direct current so as to obtain a stable output voltage, a second buck DC/DC block configured to realize output of a constant current after the stable output voltage is realized, a dimming block configured to, after realizing output of the constant current, accomplish a dimming function jointly with the second buck DC/DC block, and an MCU configured to control the buck PFC block, the second buck DC/DC block and the dimming block.
摘要:
A dimmable LED driver adapted to be operated with a dimmer that is configured to generate a predetermined conductive angle, wherein the dimmable LED driver comprises: a rectifier configured to convert an alternating current output by the dimmer to a direct current, a buck PFC block configured to adjust an output voltage of the direct current so as to obtain a stable output voltage, a second buck DC/DC block configured to realize output of a constant current after the stable output voltage is realized, a dimming block configured to, after realizing output of the constant current, accomplish a dimming function jointly with the second buck DC/DC block, and an MCU configured to control the buck PFC block, the second buck DC/DC block and the dimming block.
摘要:
In various embodiments, a method for obtaining a conduction angle of a trailing edge dimmer is provided. The method may include determining a time point t0 when the trailing edge dimmer starts to be conductive; determining an earliest time point t1 when a deviation from an ideal waveform appears; and determining the conduction angle t1-t0 of the trailing edge dimmer based on the earliest time point t1 when the deviation from the ideal waveform appears and the time point t0 when the trailing edge dimmer starts to be conductive.
摘要:
In various embodiments, a method for obtaining a conduction angle of a trailing edge dimmer is provided. The method may include determining a time point t0 when the trailing edge dimmer starts to be conductive; determining an earliest time point t1 when a deviation from an ideal waveform appears; and determining the conduction angle t1-t0 of the trailing edge dimmer based on the earliest time point t1 when the deviation from the ideal waveform appears and the time point t0 when the trailing edge dimmer starts to be conductive.
摘要:
A dimmable LED driver adapted to be operated with a dimmer that is configured to generate a predetermined conductive angle, wherein the dimmable LED driver comprises: a rectifier configured to convert an alternating current output by the dimmer to a direct current, a buck PFC block configured to adjust an output voltage of the direct current so as to obtain a stable output voltage, a second buck DC/DC block configured to realize output of a constant current after the stable output voltage is realized, a dimming block configured to, after realizing output of the constant current, accomplish a dimming function jointly with the second buck DC/DC block, and an MCU configured to control the buck PFC block, the second buck DC/DC block and the dimming block.
摘要:
Flux formulations and solder attachment during the fabrication of electronic device assemblies are described. One flux formation includes a flux component and a metal particle component, the metal particle component being present in an amount of from 5 to 35 volume percent of the flux formulation. In one feature of certain embodiments, the metal particle component includes solder particles. Other embodiments are described and claimed.
摘要:
An iteration method for computing a distribution of one or more properties within an object comprises defining a first mesh of the object, applying an excitation to the object, computing a response of the object to the applied excitation, obtaining a reference response of the object corresponding to the applied excitation, computing a distribution of one or more properties of the object, and updating at least a subset of the nodes of the first mesh to form an updated mesh of the object. The distribution of one or more properties of the object is computed using the computed response, the reference response, and the first mesh. The first mesh includes a plurality of nodes and elements. A connectivity relationship of the subset of the nodes in the updated mesh remains the same as in the first mesh.