摘要:
A sensing device comprises a substrate having an upper surface, a sensor member, at least an external conductive wire, and a standing-ring member. The sensor member, the external conductive wire and the stand-ring member are on the upper surface. The sensor member is located at the central area on the upper surface, and the standing-ring member surrounds the sensor member. The standing-ring member and the sensor member are electrically connected through the at least an external conductive wire.
摘要:
A sensing device comprises a substrate having an upper surface, a sensor member, at least an external conductive wire, and a standing-ring member. The sensor member, the external conductive wire and the stand-ring member are on the upper surface. The sensor member is located at the central area on the upper surface, and the standing-ring member surrounds the sensor member. The standing-ring member and the sensor member are electrically connected through the at least an external conductive wire.
摘要:
A sensing device can be provided with sealed and open-type chambers in various conditions for accommodating different types of sensing structural components by stacking multiple substrates, wherein the condition of a sealed chamber depends on condition taken in substrate bonding process. Owing to sealing a channel of the sealed chamber by the substrate, superior sealing performance is achieved as compared to those adopting solder or sealing material, and thus the condition of the sealed chamber can be finely controlled.
摘要:
A sensing device can be provided with sealed and open-type chambers in various conditions for accommodating different types of sensing structural components by stacking multiple substrates, wherein the condition of a sealed chamber depends on condition taken in substrate bonding process. Owing to sealing a channel of the sealed chamber by the substrate, superior sealing performance is achieved as compared to those adopting solder or sealing material, and thus the condition of the sealed chamber can be finely controlled.
摘要:
A crystal oscillator includes a cover, a crystal blank and an Integrated Circuit (IC) chip. The cover has a surface, a cavity formed in the surface, a plurality of conductive contacts and a conductive sealing ring. The conductive contacts are disposed on the surface, and the conductive sealing ring is disposed on the surface and surrounds the conductive contacts. The IC chip is connected to the conductive contacts and the conductive sealing ring, and forms a hermetic chamber with the cover and the conductive sealing ring. The crystal blank is located in the hermetic chamber, and is electrically connected to the IC chip. Furthermore, a method for manufacturing a crystal oscillator is also provided.
摘要:
A structure and a process for a microelectromechanical system (MEMS)-based sensor are provided. The structure for a MEMS-based sensor includes a substrate chip. A first insulating layer covers a top surface of the substrate chip. A device layer is disposed on a top surface of the first insulating layer. The device layer includes a periphery region and a sensor component region. The periphery region and a sensor component region have an air trench therebetween. The component region includes an anchor component and a moveable component. A second insulating layer is disposed on a top surface of the device layer, bridging the periphery region and a portion of the anchor component. A conductive pattern is disposed on the second insulating layer, electrically connecting to the anchor component.
摘要:
A structure and a process for a microelectromechanical system (MEMS)-based sensor are provided. The structure for a MEMS-based sensor includes a substrate chip. A first insulating layer covers a top surface of the substrate chip. A device layer is disposed on a top surface of the first insulating layer. The device layer includes a periphery region and a sensor component region. The periphery region and a sensor component region have an air trench therebetween. The component region includes an anchor component and a moveable component. A second insulating layer is disposed on a top surface of the device layer, bridging the periphery region and a portion of the anchor component. A conductive pattern is disposed on the second insulating layer, electrically connecting to the anchor component.
摘要:
A crystal oscillator includes a cover, a crystal blank and an Integrated Circuit (IC) chip. The cover has a surface, a cavity formed in the surface, a plurality of conductive contacts and a conductive sealing ring. The conductive contacts are disposed on the surface, and the conductive sealing ring is disposed on the surface and surrounds the conductive contacts. The IC chip is connected to the conductive contacts and the conductive sealing ring, and forms a hermetic chamber with the cover and the conductive sealing ring. The crystal blank is located in the hermetic chamber, and is electrically connected to the IC chip. Furthermore, a method for manufacturing a crystal oscillator is also provided.
摘要:
This invention provides a signal processing method of multiple micro-electro-mechanical system devices. The signal processing method includes: providing at least two MEMS devices; applying driving or modulating signals of different frequencies to the MEMS devices such that the MEMS devices generate respective MEMS signals with respective frequencies; and combining the MEMS signals with respective frequencies into one or more multi-frequency signals and outputting the multi-frequency signals, wherein a number of the multi-frequency signals is less than a number of the MEMS signals with respective frequencies. This invention also provides a combo MEMS device integrating two or more MEMS devices and two or more vibration sources.
摘要:
A multi-axis capacitive accelerometer is disclosed. A first mass is disposed and held by an anchor supported by a substrate, wherein the first mass is asymmetrically suspended on the anchor by means of two cantilevers, so that the first mass rotates about a rotation axis, for sensing the acceleration in a first direction perpendicular to the substrate. A second mass is disposed in the first mass and suspended on the first mass by means of a set of springs to sense the acceleration in a second direction parallel to the substrate. Furthermore, a third mass can be disposed in the second mass, wherein the third mass is suspended on the second mass by means of another set of springs to sense the acceleration in a third direction. The first direction, the second direction and the third direction are mutually orthogonal to each other.