Abstract:
Semiconductor devices may include a first semiconductor die comprising a heat-generating region located at a periphery thereof. A second semiconductor die is attached to the first semiconductor die. At least a portion of the heat-generating region is located laterally outside a footprint of the second semiconductor die. A thermally insulating material is located on a side surface of the second semiconductor die. Methods of forming semiconductor devices may involve attaching a second semiconductor die to a first semiconductor die. The first semiconductor die includes a heat-generating region at a periphery thereof. At least a portion of the heat-generating region is located laterally outside a footprint of the second semiconductor die. A thermally insulating material is located on a side surface of the second semiconductor die.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. An uppermost semiconductor die of the stack of semiconductor dice located on a side of the stack of semiconductor dice opposite the substrate may be a heat-generating component configured to generate more heat than each other semiconductor die of the stack of semiconductor dice. Electrical connectors may extend directly from the uppermost semiconductor die to the substrate.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. An uppermost semiconductor die of the stack of semiconductor dice located on a side of the stack of semiconductor dice opposite the substrate may be a heat-generating component configured to generate more heat than each other semiconductor die of the stack of semiconductor dice. Electrical connectors may extend directly from the uppermost semiconductor die to the substrate. A heat sink may be located on a side of the uppermost semiconductor die opposite the substrate. A passivation material may be located between the uppermost semiconductor die and the heat sink.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. The stack of semiconductor dice may include vias extending through each semiconductor die of the stack for electrically interconnecting the semiconductor dice in the stack to one another and to the substrate. Another semiconductor die may be electrically connected to the stack of semiconductor dice and may be located on a side of the stack of semiconductor dice opposing the substrate. The other semiconductor die may be a heat-generating component configured to generate more heat than each semiconductor die of the stack of semiconductor dice. Electrical connectors may be located laterally adjacent to the vias and may form electrical connections between the substrate and the other semiconductor die in isolation from integrated circuitry of the semiconductor dice in the stack.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. An uppermost semiconductor die of the stack of semiconductor dice located on a side of the stack of semiconductor dice opposite the substrate may be a heat-generating component configured to generate more heat than each other semiconductor die of the stack of semiconductor dice. Vias may directly electrically connect the uppermost semiconductor die to the substrate.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. An uppermost semiconductor die of the stack of semiconductor dice located on a side of the stack of semiconductor dice opposite the substrate may be a heat-generating component configured to generate more heat than each other semiconductor die of the stack of semiconductor dice. Vias may directly electrically connect the uppermost semiconductor die to the substrate.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. An uppermost semiconductor die of the stack of semiconductor dice located on a side of the stack of semiconductor dice opposite the substrate may be a heat-generating component configured to generate more heat than each other semiconductor die of the stack of semiconductor dice. Electrical connectors may extend directly from the uppermost semiconductor die to the substrate.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. An uppermost semiconductor die of the stack of semiconductor dice located on a side of the stack of semiconductor dice opposite the substrate may be a heat-generating component configured to generate more heat than each other semiconductor die of the stack of semiconductor dice. Electrical connectors may extend directly from the uppermost semiconductor die to the substrate. A heat sink may be located on a side of the uppermost semiconductor die opposite the substrate. A passivation material may be located between the uppermost semiconductor die and the heat sink.
Abstract:
Semiconductor device packages in accordance with this disclosure may include a substrate and a stack of semiconductor dice attached to the substrate. The stack of semiconductor dice may include vias extending through each semiconductor die of the stack for electrically interconnecting the semiconductor dice in the stack to one another and to the substrate. Another semiconductor die may be electrically connected to the stack of semiconductor dice and may be located on a side of the stack of semiconductor dice opposing the substrate. The other semiconductor die may be a heat-generating component configured to generate more heat than each semiconductor die of the stack of semiconductor dice. Electrical connectors may be located laterally adjacent to the vias and may form electrical connections between the substrate and the other semiconductor die in isolation from integrated circuitry of the semiconductor dice in the stack.
Abstract:
Semiconductor devices may include a first semiconductor die comprising a heat-generating region located at a periphery thereof. A second semiconductor die is attached to the first semiconductor die. At least a portion of the heat-generating region is located laterally outside a footprint of the second semiconductor die. A thermally insulating material is located on a side surface of the second semiconductor die. Methods of forming semiconductor devices may involve attaching a second semiconductor die to a first semiconductor die. The first semiconductor die includes a heat-generating region at a periphery thereof. At least a portion of the heat-generating region is located laterally outside a footprint of the second semiconductor die. A thermally insulating material is located on a side surface of the second semiconductor die.