Abstract:
A culture material including a 4-methyl-1-pentene polymer for cells, tissues, or organs, the culture material having a water contact angle at a culture surface of 50° to 100°, a sagging distance by a test method described below of 0 to 5 mm, and an oxygen permeation rate at a temperature of 23° C. and a humidity of 0% of 4500 to 90000 cm3/(m2×24 h×atm). A test piece having the same material as the culture material and the same thickness as the culture surface of the culture material and having a flat plate shape of 100 mm long and 10 mm wide is made. The test piece is fixed onto a test board in a state where the test piece protrudes lengthwise in a horizontal direction from a top surface of the test board, the top surface being horizontal.
Abstract:
A viscosity modifier for lubricating oils according to the present invention contains a resin (α), wherein the resin (α) satisfies specific requirements, and contains a grafted olefin polymer [R1] which is composed of a main chain and a side chain(s) and which satisfies the following requirements (i) and (ii). (i) The main chain is composed of a copolymer of ethylene and at least one α-olefin selected from α-olefins having from 3 to 12 carbon atoms, and contains the structural units derived from ethylene within the range of from 74 to 86 mol %. (ii) The side chain(s) is/are composed of a copolymer of ethylene and at least one α-olefin selected from α-olefins having from 3 to 12 carbon atoms, and contain(s) the structural units derived from ethylene within the range of from 30 to 65 mol %.
Abstract:
A novel ethylene/α-olefin/non-conjugated polyene copolymer comprising structural units derived from ethylene (A), an α-olefin (B) of 3 to 20 carbon atoms, and a non-conjugated polyene (C) containing intramolecularly two or more partial structures in total selected from the group consisting of structures of Formulae (I) and (II), and having a small number of long-chain branches, The novel ethylene/α-olefin/non-conjugated polyene copolymer contains a non-conjugated polyene such as VNB as a copolymerization component and a small long-chain branch content and is excellent in curing properties in the case of crosslinking using peroxide; and a process for producing the ethylene/α-olefin/non-conjugated polyene copolymer, and a use thereof are provided.
Abstract:
The present invention provides an olefin resin with an improved heat resistance, reduced stickiness, excellent optical and low temperature properties, as well as the balance between these physical properties. The olefin resin according to the present invention satisfies the following requirements: (I) a melting peak (Tm) is observed within the range of from 60° C. to 130° C., and the heat of fusion ΔH at the melting peak is within the range of from 5 to 150 J/g; (II) the percentage E (wt %) of a portion soluble in o-dichlorobenzene at 20° C. or lower, and the heat of fusion ΔH satisfy certain relationships; (III) the glass transition temperature (Tg) is from −80 to −30° C.; (IV) the spin-spin relaxation time (T2) of a component having the highest mobility, as obtained in a four-component approximation with a Lorentzian function performed for a free induction decay curve, is within the range of from 150 to 500 ms, and the abundance ratio of the component is within the range of from 15 to 50%; and (V) the intrinsic viscosity [η] as measured in decalin at 135° C. is within the range of from 0.1 to 12 dl/g.
Abstract:
A 4-methyl-1-pentene polymer particle (X) which satisfies the following requirements (X-a), (X-b) and (X-c): (X-a) being composed of a 4-methyl-1-pentene polymer which has a content of a constitutional unit derived from 4-methyl-1-pentene being 30.0 to 99.7% by mol, and a content of a constitutional unit derived from at least one olefin selected from ethylene and an α-olefin having 3 to 20 carbon atoms (except for 4-methyl-1-pentene) being 0.3 to 70.0% by mol; (X-b) having, when measured in a cross fractionation chromatograph apparatus (CFC) using an infrared spectrophotometer as a detector part, at least one peak A of an amount of a component eluted present in the range of 100 to 140° C., and at least one peak B of an amount of a component eluted present at lower than 100° C.; and (X-c) having a meso diad fraction (m) measured by 13C-NMR falling within the range of 95.0 to 100%.
Abstract:
The cyclic olefin copolymer composition of the present invention includes a cyclic olefin copolymer (m) including a specific amount of a specific repeating unit and a cyclic olefin copolymer (n) different from the cyclic olefin copolymer (m). The cyclic olefin copolymer (n) includes at least one type selected from a copolymer (n1) of ethylene or α-olefin and cyclic olefin (where the copolymer (n1) does not include a repeating unit derived from specific cyclic non-conjugated dienes) and a cyclic olefin ring-opening polymer (n2), and when a total amount of the cyclic olefin copolymer (m) and the cyclic olefin copolymer (n) is 100% by mass, a content of the cyclic olefin copolymer (m) is 5% by mass or more to 95% by mass or less, and a content of the cyclic olefin copolymer (n) is 5% by mass or more to 95% by mass or less.
Abstract:
An object of the present invention is to provide a propylene-based resin composition capable of providing a molded article having an excellent balance between rigidity and impact resistance. The object can be achieved by a propylene-based resin composition including an olefin-based resin characterized by including a grafted ethylene-based copolymer having an ethylene polymer as a side chain.
Abstract:
A 4-methyl-1-pentene polymer (X) wherein a content of a constitutional unit derived from 4-methyl-1-pentene is 90 to 100% by mol; a content of a constitutional unit derived from at least one olefin selected from ethylene and an α-olefin, other than 4-methyl-1-pentene, having 3 to 20 carbon atoms is 0 to 10% by mol; and the 4-methyl-1-pentene polymer satisfies certain requirements (a) to (f): (a) a meso diad fraction (m) measured by 13C-NMR falling within a certain range; (b) a ratio of weight-average molecular weight Mw within a certain range; (c) a melt flow rate (MFR) within a certain range; (d) a cumulative weight fraction within a certain range; (e) a proportion of a polymer having a molecular weight of a certain range; and (f) a heat of fusion and a melting point of the 4-methyl-1-pentene polymer within certain ranges.
Abstract:
A thermoplastic elastomer composition including: a crystalline olefin resin (A) having a melting point of 100° C. or more; an olefin resin (B) satisfying requirements (B-1) to (B-3); and an ethylene/α-olefin copolymer (C), the weight ratio of (A)/((B)+(C)) is from 70/30 to 30/70, and the weight ratio of (B)/(C) is from 100/0 to 1/99: (B-1) the resin (B) has a main chain of an ethylene copolymer and a side chain of an ethylene polymer or a propylene polymer, the ethylene copolymer includes repeating units derived from ethylene and repeating units derived from at least one α-olefin having 3 to 20 carbon atoms, and the repeating units derived from the α-olefin contained within the range of 10 to 50 mol % to the total repeating units in the main chain; (B-2) the melting point measured by DSC rom 60° C. to 170° C.; and (B-3) Tg measured by DSC from −80° C. to −30° C.
Abstract:
A novel ethylene/α-olefin/non-conjugated polyene copolymer comprising structural units derived from ethylene (A), an α-olefin (B) of 3 to 20 carbon atoms, and a non-conjugated polyene (C) containing intramolecularly two or more partial structures in total selected from the group consisting of structures of Formulae (I) and (II), and having a small number of long-chain branches, The novel ethylene/α-olefin/non-conjugated polyene copolymer contains a non-conjugated polyene such as VNB as a copolymerization component and a small long-chain branch content and is excellent in curing properties in the case of crosslinking using peroxide; and a process for producing the ethylene/α-olefin/non-conjugated polyene copolymer, and a use thereof are provided.