Abstract:
In an integrated circuit (IC) adapted for use in a stack of interconnected ICs, interrupted through-silicon-vias (TSVs) are provided in addition to uninterrupted TSVs. The interrupted TSVs provide signal paths other than common parallel paths between the ICs of the stack. This permits IC identification schemes and other functionalities to be implemented using TSVs, without requiring angular rotation of alternate ICs of the stack.
Abstract:
Apparatus and methods for carrying out operations in a non-volatile memory cell having multiple memory states are disclosed. One of the methods is a method for programming N bits in a non-volatile memory cell configured to store up to N+1 bits, where N is an integer greater than zero. The method for programming includes programming N bits of data in the cell. The method for programming also includes programming an additional bit of data that is a logical function of the N bits of data in the cell. The cell is configured to provide 2N+1 threshold voltage ranges for bit storage and, in accordance with the logical function: i) a first set of 2N threshold voltage ranges of the 2N+1 threshold voltage ranges are used to store the N bits of data; and ii) a remaining second set of 2N threshold voltage ranges alternating with the first set are unused.
Abstract:
A semiconductor device includes a bridging device having an external data interface, an external status interface, and a plurality of internal data interfaces. A plurality of memory devices are each connected to the bridging device via one of the internal data interfaces. Each of the memory devices has a ready/busy output connected to an input of the bridging device. The bridging device is configured to output a current state of each ready/busy output in a packetized format on the external status interface in response to a status request command received on the external status interface; and read information from a status register of a selected memory device over one of the internal data interfaces and provide the information on the external data interface in response to a status read command received on the external data interface. A method of operating a semiconductor device is also disclosed.
Abstract:
A semiconductor device has a plurality of stacked semiconductor dice mounted on a substrate. Each die has similar dimensions. Each die has a first plurality of bonding pads arranged along a bonding edge of the die. A first group of the dice are mounted to the substrate with the bonding edge oriented in a first direction. A second group of the dice are mounted to the substrate with the bonding edge oriented in a second direction opposite the first direction. Each die is laterally offset in the second direction relative to the remaining dice by a respective lateral offset distance such that the bonding pads of each die are not disposed between the substrate and any portion of the remaining dice in a direction perpendicular to the substrate. A plurality of bonding wires connects the bonding pads to the substrate. A method of manufacturing a semiconductor device is also disclosed.
Abstract:
A semiconductor device is disclosed, comprising a substrate having at least one substrate bonding pad. A plurality of semiconductor dies are stacked on the substrate. Each semiconductor die has at least one die bonding pad located on an active surface of the die. A plurality of interposers are each mounted on a corresponding one of the semiconductor dies. Each interposer has an aperture formed therethrough in alignment with the at least one die bonding pad. An electrical connection between the at least one die bonding pad and the at least one substrate bonding pad is formed at least in part by the interposer. The electrical connection includes at least one wire bond.