Field emission display and methods of forming a field emission display
    1.
    发明申请
    Field emission display and methods of forming a field emission display 失效
    场发射显示和形成场发射显示的方法

    公开(公告)号:US20030042834A1

    公开(公告)日:2003-03-06

    申请号:US09942451

    申请日:2001-08-29

    Applicant: Motorola, Inc.

    Abstract: A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.

    Abstract translation: 根据本发明提供场致发射器件和形成场致发射器件的方法。 场发射装置由具有小于约六百五十摄氏度的变形温度的基底(12)和形成在基底(12)上的纳米载体催化剂(22)组成,该纳米载体催化剂(22)具有活性催化剂颗粒, 小于约五百纳米。 场致发射器件还包括在纳米支撑催化剂(22)上原位催化形成的纳米管(24),其具有小于约20纳米的直径。

    Method for fabricating semiconductor structures utilizing the formation of a compliant substrate
    2.
    发明申请
    Method for fabricating semiconductor structures utilizing the formation of a compliant substrate 审中-公开
    利用形成顺应性衬底制造半导体结构的方法

    公开(公告)号:US20030082833A1

    公开(公告)日:2003-05-01

    申请号:US09983869

    申请日:2001-10-26

    Applicant: MOTOROLA, INC.

    Abstract: High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. A template layer, incorporating a wetting layer caps the accommodating buffer layer and initiates monocrystalline growth of the overlying layer. The wetting layer promotes two dimensional, layer by layer growth of the monocrystalline layer.

    Abstract translation: 通过形成用于生长单晶层的柔性衬底,可以将单晶材料的高质量外延层生长在覆盖单晶衬底(例如大硅晶片)上。 容纳缓冲层包括通过硅氧化物的非晶界面层与硅晶片间隔开的单晶氧化物层。 非晶界面层消耗应变并允许高质量单晶氧化物容纳缓冲层的生长。 容纳缓冲层与下面的硅晶片和上覆的单晶材料层晶格匹配。 通过非晶界面层处理容纳缓冲层和底层硅衬底之间的任何晶格失配。 掺入润湿层的模板层覆盖容纳缓冲层并引发上层的单晶生长。 润湿层促进单晶层的二维逐层生长。

    Fabrication of semiconductor structures and devices forms by utilizing laser assisted deposition
    3.
    发明申请
    Fabrication of semiconductor structures and devices forms by utilizing laser assisted deposition 审中-公开
    通过激光辅助沉积制造半导体结构和器件

    公开(公告)号:US20030024471A1

    公开(公告)日:2003-02-06

    申请号:US09921910

    申请日:2001-08-06

    Applicant: MOTOROLA, INC.

    Abstract: Semiconductor structures are provided with high quality epitaxial layers of monocrystalline materials grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and an overlying monocrystalline material layer. With laser assisted fabrication, a laser energy source is used to preclean the accommodating buffer layer, to excite the accommodating buffer layer to higher energy to promote two-dimensional growth, and to amorphize the accommodating buffer layer, without requiring transport of the semiconductor structure from one environment to another. When chemical vapor deposition is utilized, the laser radiation source can be employed to crack volatile chemical precursors while selectively heating the growth substrate to enable selective deposition.

    Abstract translation: 半导体结构设置有通过形成用于生长单晶层的柔性衬底生长在诸如大硅晶片的单晶衬底上生长的单晶材料的高质量外延层。 容纳缓冲层包括通过硅氧化物的非晶界面层与硅晶片间隔开的单晶氧化物层。 容纳缓冲层与下面的硅晶片和上覆单晶材料层晶格匹配。 通过激光辅助制造,使用激光能量源来清除容纳缓冲层,将容纳缓冲层激发到更高的能量以促进二维生长,并使收容缓冲层非晶化,而不需要将半导体结构从 一个环境到另一个环境。 当使用化学气相沉积时,可以使用激光辐射源来裂化挥发性化学前体,同时选择性地加热生长衬底以实现选择性沉积。

    Optical waveguide structure and method for fabricating the same
    4.
    发明申请
    Optical waveguide structure and method for fabricating the same 有权
    光波导结构及其制造方法

    公开(公告)号:US20040151463A1

    公开(公告)日:2004-08-05

    申请号:US10356550

    申请日:2003-02-03

    Applicant: MOTOROLA, INC.

    CPC classification number: G02B6/132

    Abstract: An optical waveguide structure (10) is provided. The optical waveguide structure (10) has a monocrystalline substrate (12), an amorphous interface layer (14) overlying the monocrystalline substrate (12) and an accommodating buffer layer (16) overlying the amorphous interface layer (14). An optical waveguide layer (20) overlies the accommodating buffer layer (16).

    Abstract translation: 提供一种光波导结构(10)。 光波导结构(10)具有单晶衬底(12),覆盖单晶衬底(12)的非晶界面层(14)和覆盖在非晶界面层(14)上的容纳缓冲层(16)。 光波导层(20)覆盖容纳缓冲层(16)。

    Vacuum microelectronic device and method
    6.
    发明申请
    Vacuum microelectronic device and method 失效
    真空微电子器件及方法

    公开(公告)号:US20030036332A1

    公开(公告)日:2003-02-20

    申请号:US09932642

    申请日:2001-08-17

    Applicant: Motorola, Inc.

    Abstract: A vacuum microelectronic device (10,40) emits electrons (37) from surfaces of nanotube emitters (17, 18). Extracting electrons from the surface of each nanotube emitter (17) results is a small voltage variation between each emitter utilized in the device (10, 40). Consequently, the vacuum microelectronic device (10,40) has a more controllable turn-on voltage and a consistent current density from each nanotube emitter (17,18).

    Abstract translation: 真空微电子器件(10,40)从纳米管发射器(17,18)的表面发射电子(37)。 从每个纳米管发射器(17)的表面提取电子的结果是在器件(10,40)中使用的每个发射极之间的电压变化很小。 因此,真空微电子器件(10,40)具有来自每个纳米管发射极(17,18)的更可控的接通电压和一致的电流密度。

Patent Agency Ranking