Abstract:
High-density metal-insulator transition field effect transistors are grown on an advanced substrate using buried channel or surface channel designs. With respect to the advanced substrate, high quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing ion beam assisted deposition, surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
Abstract:
A semiconductor structure exhibiting reduced leakage current is formed of a monocrystalline substrate (101) and a strained-layer heterostructure (105). The strained-layer heterostructure has a first layer (102) formed of a first monocrystalline oxide material having a first lattice constant and a second layer (104) formed of a second monocrystalline oxide material overlying the first layer and having a second lattice constant. The second lattice constant is different from the first lattice constant. The second layer creates strain within the oxide material layers, at the interface between the first and second oxide material layers of the heterostructure, and at the interface of the substrate and the first layer, which changes the energy band offset at the interface of the substrate and the first layer.
Abstract:
A high quality epitaxial layer of monocrystalline Pb(Mg,Nb)O3nullPbTiO3 or Pb(Mg1-x-Nbx)O3nullPbTiO3 can be grown overlying large silicon wafers by first growing an strontium titanate layer on a silicon wafer. The strontium titanate layer is a monocrystalline layer spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide.
Abstract:
An apparatus (100) and method (800) for forming high quality epitaxial layers of monocrystalline materials grown overlying monocrystalline substrates (310) such as large silicon wafers is provided. The apparatus (100) includes at least two deposition chambers (110) and (140) that are coupled together. The first chamber (110) is used to form an accommodating buffer layer (320) on the substrate (310) and the second (140) is used to form a layer of monocrystalline material (330) overlying the accommodating buffer layer (320).
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. A template layer, incorporating a wetting layer caps the accommodating buffer layer and initiates monocrystalline growth of the overlying layer. The wetting layer promotes two dimensional, layer by layer growth of the monocrystalline layer.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (24) on a silicon wafer (22). The accommodating buffer layer (24) is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide (28). The amorphous interface layer (28) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Light-assisted deposition techniques are used to form the accommodating buffer layer (24).
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. A monocrystalline layer is then formed over the accommodating buffer layer, such that a lattice constant of the monocrystalline layer substantially matches the lattice constant of a subsequently grown monocrystalline film.
Abstract:
A method of fabricating a semiconductor structure including the steps of providing a silicon substrate (10) having a surface (12), forming on the surface (12) of the silicon substrate (10), by atomic layer deposition (ALD), a seed layer (20;21null) comprising a silicate material and forming, by atomic layer deposition (ALD) one or more layers of a high dielectric constant oxide (42) on the seed layer (20;21null).
Abstract:
A quantum structure (300) having photo-catalytic properties includes a monocrystalline substrate (302) and a monocrystalline metal oxide layer (308) formed of a material comprising titanium and oxygen and epitaxially grown overlying the substrate. The quantum structure further includes self-assembled quantum dots (312) disposed on the monocrystalline metal oxide layer and formed of a material comprising copper and oxygen.