Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. Enhancement of thermal conductivity of the monocrystalline oxide layer is accomplished with the use of isotopically enriched materials.
Abstract:
A composite semiconductor including silicon and compound semiconductor, and having a metal semiconductor field effect transistor (MESFET) integrated at least partially with the silicon and at least partially with the GaAs having a silicon back gate is provided. The back gate for the MESFET may be formed by doping a region of the monocrystalline silicon substrate before forming the transistor. In a structure according the invention, integrated circuits may be provided to match the threshold voltages of one MESFET to another, improve the transconductance of a MESFET, and improve the switching speed of a MESFET.
Abstract:
A process and a semiconductor structure are disclosed for fabricating substantially identical tuned ferro-electric components for varying the frequency or phase of a radio frequency signal at multiple locations of an integrated circuit using the same control voltage. The process includes the steps of epitaxially forming a monocrystalline layer of ferro-electric material on a monocrystalline ground plane; forming an input electrically coupled to the monocrystalline layer of ferro-electric material for receiving a bias voltage to vary at least one of a frequency and a phase of a radio frequency signal; epitaxially forming a monocrystalline layer of an electrically conductive material on the monocrystalline layer of ferro-electric material to constitute a transmission line; and forming an input electrically coupled to the transmission line for receiving the radio frequency signal.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying a monocrystalline substrate of a semiconductor structure by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. An optical waveguide is formed in a monocrystalline layer grown on the semiconductor structure for distributing an optical signal to a selected portion of circuitry formed in the semiconductor structure. An optical source is formed in the semiconductor structure and coupled to the optical waveguide for generating the optical signal. A waveguide interferometer is formed in a monocrystalline layer of the semiconductor structure and coupled to the optical waveguide for switching the optical signal between an nullonnull state and an nulloffnull state. An optical detector is formed in the semiconductor structure and coupled to the waveguide interferometer for converting the optical signal to an electrical signal at the selected portion of circuitry of the semiconductor structure.
Abstract:
Apparatus and techniques for implementing wireless communication between integrated transmitters and integrated receivers are provided. By providing a semiconductor structure including silicon and a compound semiconductor, a single circuit can be integrated part in silicon and part in compound semiconductor. In a semiconductor structure according to the invention, a wireless transmitter and a wireless receiver can be integrated in a compound semiconductor portion of the structure and digital CMOS circuitry can be integrated in the silicon portion of the structure. This obtains substantially increased wireless transmission efficiency. The circuits according to the invention can be implemented with circuits that wirelessly transmit from one portion of the chip to another portion of the chip, or with circuits that wirelessly transmit from one integrated circuit to a second integrated circuit.
Abstract:
Reference circuits are provided that include circuit components formed from both a composite semiconductor and silicon on a single integrated circuit. The reference circuits provide a reference current that is a function of the threshold voltage of the compound semiconductor device. The reference circuits may include, for example, a HEMT formed on a gallium arsenide layer, which overlays at least a portion of a silicon substrate. A MOSFET formed on the silicon substrate is coupled to the HEMT through a current mirror so that both devices are coupled to receive current based on a common current. Each device is coupled to one input of an error amplifier that provides an output signal that adjusts the common current.
Abstract:
High quality epitaxial layers of germanium can be grown overlying large silicon wafers by first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline germanium layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.
Abstract:
A composite semiconductor structure may be processed to form a compound semiconductor dynamic threshold-voltage field effect transistor. The compound semiconductor dynamic threshold-voltage field effect transistor may be provided by forming a compound semiconductor field effect transistor using a compound semiconductor region of the composite semiconductor structure and providing an electrical tie between a node at the gate of the transistor and a node at the body of the transistor. The node at the body may be a node that is coupled to a channel that is formed in the body when the transistor is conducting electricity. Dielectric isolation may be provided through an insulation layer that is in between the compound semiconductor region and non-compound semiconductor region of the composite semiconductor structure. Lateral isolation may be provided through trenches on the sides of the transistor that are filled with an insulator.