摘要:
A SiC bulk substrate whose top face has been flattened is placed in a vertical thin film growth system to be annealed in an inert gas atmosphere. A material gas of Si is then supplied at a flow rate of 1 mL/min. at a substrate temperature of 1200° C. through 1600° C. Subsequently, the diluent gas is changed to a hydrogen gas at a temperature of 1600° C., and material gases of Si and carbon are supplied with nitrogen intermittently supplied, so as to deposit SiC thin films on the SiC bulk substrate. In a flat δ-doped multilayered structure thus formed, an average height of macro steps formed on the top face and on interfaces therein is 30 nm or less. When the resultant substrate is used, a semiconductor device with a high breakdown voltage and high mobility can be realized.
摘要:
A Schottky diode includes a semiconductor substrate made of 4H—SiC, an epitaxially grown 4H—SiC layer, an ion implantation layer, a Schottky electrode, an ohmic electrode, and an insulative layer made of a thermal oxide film. The Schottky electrode and the insulative layer are not in contact with each other, with a gap being provided therebetween, whereby an altered layer does not occur. Therefore, it is possible to suppress the occurrence of a leak current.
摘要:
A DMOS device (or IGBT) includes an SiC substrate 2, an n-SiC layer 3 (drift region) formed in an epitaxial layer, a gate insulating film 6, a gate electrode 7a, a source electrode 7b formed to surround the gate electrode 7a, a drain electrode 7c formed on the lower surface of the SiC substrate 2, a p-SiC layer 4, an n+ SiC layer 3 formed to be present from under edges of the source electrode 7b to under associated edges of the gate electrode 7a. In addition, the device includes an n-type doped layer 10a containing a high concentration of nitrogen and an undoped layer 10b, which are stacked in a region in the surface portion of the epitaxial layer except the region where the n+ SiC layer 5 is formed. By utilizing a quantum effect, the device can have its on-resistance decreased, and can also have its breakdown voltage increased when in its off state.
摘要:
A suppression layer is formed on a SiC substrate in accordance with a CVD method which alternately repeats the step of epitaxially growing an undoped layer which is a SiC layer into which an impurity is not introduced and the step of epitaxially growing an impurity doped layer which is a SiC layer into which nitrogen is introduced pulsatively. A sharp concentration profile of nitrogen in the suppression layer prevents the extension of micropipes. A semiconductor device properly using the high breakdown voltage and high-temperature operability of SiC can be formed by depositing SiC layers forming an active region on the suppression layer.
摘要:
Equipment for a communication system has a semiconductor device formed by integrating a Schottky diode, a MOSFET, a capacitor, and an inductor in a SiC substrate. The SiC substrate has a first multilayer portion and a second multilayer portion provided upwardly in this order. The first multilayer portion is composed of δ-doped layers each containing an n-type impurity (nitrogen) at a high concentration and undoped layers which are alternately stacked. The second multilayer portion is composed of δ-doped layers each containing a p-type impurity (aluminum) at a high concentration and undoped layers which are alternately stacked. Carriers in the δ-doped layers spread out extensively to the undoped layers. Because of a low impurity concentration in each of the undoped layers, scattering by impurity ions is reduced so that a low resistance and a high breakdown voltage are obtained.
摘要:
There are provided a field effect transistor with a high withstand voltage and low loss and a method of manufacturing the same. The field effect transistor includes an n-type substrate, an n-type semiconductor layer formed on the n-type substrate, a p-type semiconductor layer formed on the n-type semiconductor layer, a p-type region embedded in the n-type semiconductor layer, an n-type region embedded in the n-type semiconductor layer and the p-type semiconductor layer, an n-type source region disposed in the p-type semiconductor layer on its surface side, an insulating layer disposed on the p-type semiconductor layer, a gate electrode disposed on the insulating layer, a source electrode, and a drain electrode. The n-type semiconductor layer, the p-type semiconductor layer, and the p-type region are made of wide-gap semiconductors with a bandgap of at least 2 eV, respectively.
摘要:
Equipment for a communication system has a semiconductor device formed by integrating a Schottky diode, a MOSFET, a capacitor, and an inductor in a SiC substrate. The SiC substrate has a first multilayer portion and a second multilayer portion provided upwardly in this order. The first multilayer portion is composed of &dgr;-doped layers each containing an n-type impurity (nitrogen) at a high concentration and undoped layers which are alternately stacked. The second multilayer portion is composed of &dgr;-doped layers each containing a p-type impurity (aluminum) at a high concentration and undoped layers which are alternately stacked. Carriers in the &dgr;-doped layers spread out extensively to the undoped layers. Because of a low impurity concentration in each of the undoped layers, scattering by impurity ions is reduced so that a low resistance and a high breakdown voltage are obtained.
摘要:
An active region 30 is formed on a substrate 3, which is made of SiC, GaN, or GaAs, for example, by alternately layering undoped layers 22 with a thickness of for example about 50 nm and n-type doped layers 23 with a thickness (for example, about 10 nm) that is thin enough that quantum effects can be achieved. Carriers spread out into the undoped layers 22 from sub-bands of the n-type doped layers 23 that occur due to quantum effects. In the undoped layers 22, which have a low concentration of impurities, the scattering of impurities is reduced, and therefore a high carrier mobility can be obtained there, and when the entire active region 30 has become depleted, a large withstand voltage value can be obtained due to the undoped layers 22 by taking advantage of the fact that there are no more carriers in the active region 30.
摘要:
P-type active region 12; n-type source/drain regions 13a and 13b; gate insulating film 14 made of a thermal oxide film; gate electrode 15; source/drain electrodes 16a and 16b, are provided over a p-type SiC substrate 11. In the active region 12, p-type heavily doped layers 12a, which are thin enough to create a quantum effect, and thick undoped layers 12b are alternately stacked. When carriers flow, scattering of impurity ions in the active region is reduced, and the channel mobility increases. In the OFF state, a depletion layer expands throughout the active region, and the breakdown voltage increases. As a result of reduction in charges trapped in the gate insulating film or near the interface between the gate insulating film and the active region, the channel mobility further increases.
摘要:
An active region 30 is formed on a substrate 3, which is made of SiC, GaN, or GaAs, for example, by alternately layering undoped layers 22 with a thickness of for example about 50 nm and n-type doped layers 23 with a thickness (for example, about 10 nm) that is thin enough that quantum effects can be achieved. Carriers spread out into the undoped layers 22 from sub-bands of the n-type doped layers 23 that occur due to quantum effects. In the undoped layers 22, which have a low concentration of impurities, the scattering of impurities is reduced, and therefore a high carrier mobility can be obtained there, and when the entire active region 30 has become depleted, a large withstand voltage value can be obtained due to the undoped layers 22 by taking advantage of the fact that there are no more carriers in the active region 30.