摘要:
The formation of a graded passivation layer is disclosed. In one embodiment, a method includes four steps. In the first step, at least one transistor on a semiconductor substrate is provided. In the second step, at least one metallization layer is formed over the at least one transistor. In the third step, an oxide layer is deposited over the at least one metallization layer. Finally, in the fourth step, an ion implantation of a predetermined dopant is applied to create a graded passivation film over the at least one metallization layer.
摘要:
A fabrication process for semiconductor devices is disclosed for forming ultra-thin gate oxides, whereby a silicon substrate is subjected to an N2O plasma to form the ultra-thin gate oxide. According to one embodiment, the silicon substrate is heated in a deposition chamber and the N2O plasma is created by applying RF power to a showerhead from which the N2O is dispensed. By reacting an N2O plasma directly with the silicon substrate it is possible to achieve gate oxides with thicknesses less than 20 Å and relative uniformities of less than 1% standard deviation. The oxide growth rate resulting from the presently disclosed N2O plasma treatment is much slower than other known oxide formation techniques. One advantage of the disclosed N2O plasma treatment over thermal oxidation lies in the predictability of oxide growth thickness resulting from reaction with N2O plasma versus the strong variation in oxide formation rates exhibited by thermal oxidation. Following gate oxide formation, a high temperature anneal may be performed, preferably in an RTA apparatus. By combining the N2O plasma treatment with an RTA process, the disclosed method is believed to offer a controllable and reproducible method for fabricating highly uniform, ultra-thin gate oxides, having low trapping state densities.
摘要:
A device stack for fabrication of an isolation structure and methods of fabricating the same are provided. In one aspect, a method of processing a substrate is provided that includes exposing the substrate to a plasma ambient containing nitrogen and oxygen to form a nitrogen containing interface. An oxide film is formed on the nitrogen containing interface and a silicon rich nitride film is formed on the oxide film. The silicon rich nitride film is exposed to a plasma ambient containing oxygen to convert an upper portion of the silicon rich nitride film to silicon oxynitride. The optical properties of the nitride film are enhanced so that UV lithographic patterning of etch masking is improved.
摘要:
A method for fabricating an integrated circuit is presented. In the method, a dielectric layer is formed, and then a conductive layer is formed upon the dielectric layer. A base gate may then be patterned from the conductive layer. An intergate dielectric is preferably formed over and around the base gate. A spacer gate may then be formed such that at least a portion of the spacer gate is elevationally below an upper portion of the base gate. At least a portion of the intergate dielectric layer is preferably interposed between a sidewall surface of the spacer gate and a sidewall surface of the base gate. The final memory cell fabricated in this manner does not need to transfer electrons from a semiconducting substrate during operation.
摘要:
Various methods of fabricating a circuit structure utilizing silicon nitride are provided. In one aspect, a method of fabricating a circuit structure is provided that includes forming a silicon nitride film on a silicon surface, annealing the silicon nitride film in an ammonia ambient and annealing the silicon nitride film in a nitrous oxide ambient to form a thin oxide layer at an interface between the silicon nitride film and the silicon surface. The process of the present invention enables the manufacture of thin silicon nitride films with highly uniform morphology for use as gate dielectrics or other purposes. The thin oxide film is self-limiting in thickness and improves differential mechanical stresses.
摘要:
An interlevel dielectric including a tetraethyl orthosilicate (TEOS) oxide and a silicon oxynitride (SiON) etch stop layer is formed for use in integrated circuit fabrication. A SiON layer is deposited onto a semiconductor substrate which may include transistors and/or interconnect levels. The SiON layer is heated before deposition of the TEOS layer. Heating of the SiON layer greatly reduces the number of defects formed during the TEOS deposition. A highly conformal, high-quality interlevel dielectric is thereby formed.
摘要:
An ultrathin gate dielectric and a method for forming the same are provided. The gate dielectric is believed to allow enhanced performance of semiconductor devices including transistors and dual-gate memory cells. A low-power, low-pressure plasma-enhanced chemical vapor deposition (PECVD) method employing silane and nitrous oxide sources is used to deposit the dielectric. As compared to conventional PECVD deposition, the method uses lower silane and nitrous oxide flow rates, a more dilute silane in nitrogen mixture, a lower chamber pressure, and a lower radio frequency power density. These settings allow plasma conditions to stabilize so that deposition may be performed in time increments at least as short as 0.1 second, so that oxide thicknesses at least as small as one angstrom may be controllably deposited. The oxide is preferably deposited in portions at multiple substrate mounting positions in a deposition chamber. Combination of oxide portions in this manner is believed to reduce the density of pinholes in the oxide, and the low-power, low-pressure deposition conditions are further believed to reduce plasma damage to the oxide and reduce the density of trap states in the oxide. A rapid thermal anneal of the oxide may be performed after deposition, and may improve the quality of the interface between the oxide and the underlying semiconductor substrate.
摘要:
A semiconductor device is provided and formed using self-aligned metal-containing gates within a metal-oxide semiconductor (MOS) process. After forming junction regions within a semiconductor substrate, the gate conductor, or junction implant alignment structure, is at least partially removed to form a trench within a dielectric formed above the substrate. Upper surfaces of the transistor, except the upper surface of the gate conductor, are thereby protected by the dielectric. A metal-containing material can then be arranged within the trench, i.e., in the region removed of the gate conductor. The metal material can be formed either as a single layer or as multiple metal and/or dielectric layers interposed throughout the as-filled trench. The metal-filled trench formation occurs after high temperature cycles often associated with activating the previously implanted junctions or growing gate dielectrics. Thus, low-temperature metals such as copper or copper alloys can be used.
摘要:
A method of forming a semiconductor device by using a pillar to form a contact with an active region of the device. A semiconductor device is formed by forming one or more active regions on a substrate of the semiconductor device and forming a pillar over at least a portion of one of the active regions. An insulating film selective to the pillar is provided over portions of the substrate adjacent the pillar. The pillar is then used to form a conductive contact with the active region over which it is formed. In one embodiment, the pillar is formed from a photoresist, while in other embodiments, the pillar is formed from a conductor material such as a metal. The active region may form a source/drain region or a gate electrode.
摘要:
An integrated circuit fabrication process is provided in which an elevated doped polysilicon structure may be formed. The elevated structure may serve as a junction area of a transistor formed entirely within and upon the elevated polysilicon. The elevated structure frees up space within the lower level substrate for additional transistors and/or lateral interconnect, a benefit of which is to promote higher packing density within the integrated circuit. A transistor is provided which includes a gate conductor spaced between a pair of junctions. A primary interlevel dielectric is deposited across the transistor. A polysilicon structure is formed within a select portion of the upper surface of the primary interlevel dielectric. The polysilicon structure is a spaced distance above and a lateral distance from the transistor. A dopant is implanted into the polysilicon structure. A secondary interlevel dielectric is deposited across the primary interlevel dielectric and the doped polysilicon structure. Select portions of the primary and secondary interlevel dielectrics are then removed to expose one of the junctions and a portion of the doped polysilicon structure arranged proximate this junction. An interconnect is formed contiguously between the junction and the polysilicon structure by depositing a conductive material within the removed portions.