摘要:
An electrophoretic display device (1) comprising one pixel (10) with an electrophoretic medium (13), electrodes (6, 7), as well as drive means (4) by which the pixels can be brought into different optical states. Some time (thold) after the application of an addressing pulse (Paddress) for setting the brightness level (Rw, Rb) of a pixel (10), a restore pulse voltage (Prestore) is applied between the electrodes (6,6′,7) for restoring the brightness level of a pixel to the set level (Rw, Rb). The restore pulse may be a set of consecutive pulses to bring the drifted brightness level even more smoothly (i.e. less perceivably) back to the original brightness level.
摘要:
The invention relates to a display device comprising electrophoretic particles, a display element comprising a pixel electrode and an associated counter electrode, between which a portion of the electrophoretic particles is present, and a controller for supplying a drive signal to the electrodes to bring the display element to a predetermined black or white state, corresponding to the image information to be displayed. In order to improve the refresh time of the display, the controller is further arranged to supply a preset signal preceding the drive signal comprising a preset pulse representing an energy which is sufficient to release the electrophoretic particles at a first position near one of the two electrodes corresponding to a black state, but is too low to enable the particles to reach a second position near the other electrode corresponding to a white state.
摘要:
The invention relates to an electro-optically active display device, comprising at least one individually addressable pixel, each pixel being provided with an obstructing element (3), such as a reservoir light shield, a black matrix or a mirror element. According to the invention, a portion of at least one component is positioned beneath the obstructing element in such a way that the portion is not visible for a viewer of the display device.
摘要:
The electrophoretic multi-color display device has a plurality of cells (10, 10′, 10″, . . . ) with an electrophoretic medium (14) and pixel electrodes (11, 11′, 11″, . . . ) for selecting a subgroup of cells. A color filter array (13) is associated with the pixel electrodes. The color filter array (13) and the pixel electrodes (11, 11′, 11″, . . . ) are provided at the same side of the electrophoretic medium (14). Preferably, the cells (10, 10′, 10″, . . . ) of the color filter array (13) are arranged according to a matrix and are disposed along lines registering with the pixel electrodes (11, 11′, 11″, . . . ). Preferably, an insulating material (17) with a relatively low refractive index is provided between the pixel electrodes (11, 11′, 11″ . . . ) and the color filter array (13). Preferably, the insulating material (17) is selected from the group formed by a fluor-polymer, a low-dielectric inorganic film and a low-dielectric nano-porous film.
摘要:
An electro-optically active display device including at least one individually addressable pixel, each pixel being provided with an obstructing element, such as a reservoir light shield, a black matrix or a mirror element. A portion of at least one electrical component is positioned beneath the obstructing element in such a way that the portion is not visible for a viewer of the display device.
摘要:
An apparatus and method for modifying a psychophysiological state of a subject include detecting a psychophysiological measure of the subject; processing the detected physiological measure so as to provide a signal indicative of a psychophysiological state of the subject; and outputting at least one of an audio stimulus, visual stimulus, haptic stimulus, temperature stimulus and scent stimulus to the subject. The output stimulus may be derived from an audio-visual data signal provided to the apparatus. Further, the output stimulus is adjusting in real time based on the signal indicative of a psychophysiological state of the subject.
摘要:
A method of maintaining a state in a subject includes measuring one or more physiological parameters of the subject, calculating, using the measured parameter(s), a value, determining if the calculated value is below a lower threshold or above an upper threshold, and generating an output to the subject if the calculated value is determined to be below the lower threshold or above the upper threshold. In one embodiment, the generating an output to the subject includes generating a first output if the calculated value is determined to be below the lower threshold and generating a second output if the calculated value is determined to be above the upper threshold, the second output being different from the first output.
摘要:
A display device and a method for driving the display device is disclosed. The display device comprises drive circuitry (35) and a plurality of pixels (PIX1, PIX2, PIX3, PIX4, PIX5, PIX6) having movable charged particles (116). The drive circuitry is configured to apply control signals to the pixels to move the charged particles between first (110) and second (112) regions of each pixel in order to alter the optical appearance of each pixel. The method for each pixel comprises a pre-addressing stage (PRA) of moving the charged particles towards the boundary (114) between the first and second regions, and then an addressing stage (ADD) of moving the particles to one side or the other side of the boundary, in dependence on the desired optical appearance of the pixel.
摘要:
The invention relates to different designs of a microelectronic sensor device comprising an array of heating elements (HE) and an array of sensor elements (SE) that are aligned with respect to each other adjacent to a sample chamber (SC). By applying appropriate currents to the heating elements (HE), the sample chamber can be heated according to a desired temperature profile.
摘要:
Electrophoretic display units (1) comprising pixels (11) situated between common electrodes (6) and pixel electrodes (5) need, for shortening the total image update times, increased driving voltages across the pixels (11) which endanger transistors (12) coupled to the pixel electrodes (5). These increased driving voltage (V6) to the common electrode (6). To protect the transistors (12) against these increased driving voltages, a setting signal (S1, S2) is supplied to the pixel electrode (5) via the transistor (12) for reducing a voltage across the pixel (11) resulting from a transition in the alternating voltage signal (V6). During driving frame periods (Fd) data pulses (D1, D2, D3, D4, D5, D6) are supplied, and during setting frame periods (Fs), the setting signals (S1, S2) are supplied.