摘要:
The present invention relates to photovoltaic devices such as silicon solar cells. Devices shown exhibit improved low light performance and increased breakdown strength. Reasons for such improvements includes emitter concentration profiles leading to significantly reduced leakage currents.
摘要:
Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. Common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, mainly increased material strength. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells. A silicon material with a germanium concentration in the range (50-200) ppmw demonstrates an increased material strength, where best practical ranges depend on the material quality generated.
摘要:
Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. Common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, mainly increased material strength. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells. A silicon material with a germanium concentration in the range (50-200) ppmw demonstrates an increased material strength, where best practical ranges depend on the material quality generated.
摘要:
Formation of a solar cell device from upgraded metallurgical grade silicon which has received at least one defect engineering process and including a low contact resistance electrical path. An anti-reflective coating is formed on an emitter layer and back contacts are formed on a back surface of the bulk silicon substrate. This photovoltaic device may be fired to form a back surface field at a temperature sufficiently low to avoid reversal of previous defect engineering processes. The process further forms openings in the anti-reflective coating and a low contact resistance metal layer, such as nickel layer, over the openings in the anti-reflective coating. The process may anneal the low contact resistance metal layer to form n-doped portion and complete an electrically conduct path to the n-doped layer. This low temperature metallization (e.g.,
摘要:
A simplified manufacturing process and the resultant bifacial solar cell (BSC) are provided, the simplified manufacturing process reducing manufacturing costs. The BSC includes a back surface contact grid and an overlaid blanket metal reflector. A doped amorphous silicon layer is interposed between the contact grid and the blanket layer.
摘要:
Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. A common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, including increased material strength and improved electrical properties. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells.
摘要:
A simplified manufacturing process and the resultant bifacial solar cell (BSC) are provided, the simplified manufacturing process reducing manufacturing costs. The BSC includes an active region located on the front surface of the substrate, formed for example by a phosphorous diffusion step. After removing the PSG, assuming phosphorous diffusion, and isolating the front junction, dielectric layers are deposited on the front and back surfaces. Contact grids are formed, for example by screen printing. Prior to depositing the back surface dielectric, a metal grid may be applied to the back surface, the back surface contact grid registered to, and alloyed to, the metal grid during contact firing.
摘要:
A simplified manufacturing process and the resultant bifacial solar cell (BSC) are provided, the simplified manufacturing process reducing manufacturing costs. The BSC includes an active region located on the front surface of the substrate, formed for example by a phosphorous diffusion step. The back surface includes a doped region, the doped region having the same conductivity as the substrate but with a higher doping level. Contact grids are formed, for example by screen printing. Front junction isolation is accomplished using a laser scribe.
摘要:
A simplified manufacturing process and the resultant bifacial solar cell (BSC) are provided, the simplified manufacturing process reducing manufacturing costs. The BSC includes an active region located on the front surface of the substrate, formed for example by a phosphorous diffusion step. After removing the PSG, assuming phosphorous diffusion, and isolating the front junction, dielectric layers are deposited on the front and back surfaces. Contact grids are formed, for example by screen printing. Prior to depositing the back surface dielectric, a metal grid may be applied to the back surface, the back surface contact grid registered to, and alloyed to, the metal grid during contact firing.
摘要:
Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. A common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, including increased material strength and improved electrical properties. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells.