摘要:
The present invention is a quartz glass crucible 5 for pulling a silicon single crystal, comprising at least an outer layer portion 23 being a translucent glass layer containing multiple bubbles in it and an inner layer portion 24 being a transparent quartz glass layer having no bubbles and a smooth surface, formed on the inner surface of the outer layer portion 23, wherein the outer layer portion 23 contains bubbles of 0.1 to 0.3 mm in diameter at the density of 1.5 to 5.0×104 bubbles/cm3. Thus, there are provided a quartz glass crucible for pulling a silicon single crystal, the quartz glass crucible being increased in mechanical strength, making it possible to suppress deformation of a quartz glass crucible for pulling a silicon single crystal during a single crystal pulling process, thereby prevent degradation in yield rate due to dislocation in a single crystal and make the manufacture of a silicon single crystal highly efficient and a method of manufacturing the same quartz glass crucible.
摘要翻译:本发明是一种用于拉制单晶硅的石英玻璃坩埚5,至少包括外层多数部分23和外层部分23,该外层部分23是包含多个气泡的半透明玻璃层,内层部分24是不含气泡的透明石英玻璃层, 形成在外层部23的内表面上的光滑表面,其中,外层部23的密度为1.5〜5.0×10 4个气泡/ cm 3的直径为0.1〜0.3mm的气泡。 因此,提供了用于拉制单晶硅的石英玻璃坩埚,石英玻璃坩埚的机械强度提高,从而可以抑制在单晶拉制工艺期间拉出硅单晶的石英玻璃坩埚的变形, 从而防止由于单晶中的位错导致的成品率的降低,并且制造高效的硅单晶,以及制造相同的石英玻璃坩埚的方法。
摘要:
An epitaxial silicon wafer, which has no projections having a size of 100 nm or more and a height of 5 nm or more on an epitaxial layer, and a method for producing an epitaxial silicon wafer, wherein a single crystal ingot containing no I-region is grown when a silicon single crystal is grown by the CZ method, and an epitaxial layer is deposited on a silicon wafer sliced from the single crystal ingot and containing no I-region for the entire surface. An epitaxial wafer of high quality with no projection-like surface distortion observed as particles on an epi-layer surface is provided by forming a wafer having no I-region for the entire surface from a single crystal and depositing an epitaxial layer thereon, and a single crystal having no I-region for entire plane is produced with good yield and high productivity, thereby improving productivity of epi-wafers and realizing cost reduction.
摘要:
The present invention provides a method for producing a silicon wafer from a defect-free silicon single crystal grown by a CZ method, the method comprising: preparing a silicon wafer obtained by slicing the defect-free silicon single crystal and subjected to mirror-polishing; then performing a heat treatment step of subjecting the mirror-polished silicon wafer to heat treatment at a temperature of 500° C. or higher but 600° C. or lower for 4 hours or more but 6 hours or less; and performing a repolishing step of repolishing the silicon wafer after the heat treatment step such that a polishing amount becomes 1.5 μm or more. Therefore, it is an object to provide a method by which a silicon wafer can be produced at a high yield, the silicon wafer in which LPDs are reduced to a minimum, the silicon wafer with a low failure-incidence rate in an inspection step and a shipment stage.
摘要:
Methods for producing a silicon wafer from a defect-free silicon single crystal grown by a Czochralski (CZ) method are provided. The methods comprise: preparing a silicon wafer obtained by slicing the defect-free silicon single crystal and subjected to mirror-polishing; then performing a heat treatment step of subjecting the mirror-polished silicon wafer to heat treatment at a temperature of 500° C. or higher but 600° C. or lower for 4 hours or more but 6 hours or less; and performing a repolishing step of repolishing the silicon wafer after the heat treatment step such that a polishing amount becomes 1.5 μm or more. Therefore, it is an object to provide a method by which a silicon wafer can be produced at a high yield, the silicon wafer in which Light Point Defects (LPDs) are reduced to a minimum, the silicon wafer with a low failure-incidence rate in an inspection step and a shipment stage.
摘要:
This invention provides a process for producing a single crystal by a Chokralsky method in which a horizontal magnetic field is applied, characterized in that a single crystal is pulled up so that the radial magnetic field strength gradient ΔBr/ΔRc in such a direction that centers of magnetic field generation coils (25) are connected, is more than 5.5 (gauss/mm) and not more than 10 (gauss/mm) wherein ΔBr represents the amount of a variation in magnetic field strength from an original point (O) as the center part on a solid-liquid interface of a single crystal (12) to the inner wall (A) of a crucible on the surface of a melt, gauss; and ΔRc represents a radial distance from the original point (O) to the inner wall (A) of the crucible on the surface of the melt, mm. According to the production process of a single crystal, in growing a single crystal, the variation in temperature gradient near the solid-liquid interface can be minimized, and a high-quality single crystal having a desired defect zone in the direction of crystal growth can easily be produced with high productivity at high yield.
摘要:
The present invention is a method of producing a P(phosphorus)-doped silicon single crystal by Czochralski method, wherein, at least, a growth of the single crystal is performed so that an Al (aluminum) concentration is 2×1012 atoms/cc or more. Thereby, there can be provided a method of easily and inexpensively producing a P(phosphorus)-doped silicon single crystal of defect-free region having an excellent capability of electrical characteristics to be high breakdown voltage, which contains neither, for example, V region, OSF region, nor large dislocation cluster (LSEPD, LFPD) region.
摘要:
In a method for producing a silicon single crystal by Czochralski method, the single crystal is grown with controlling a growth rate between a growth rate at a boundary where a defect region detected by Cu deposition remaining after disappearance of OSF ring disappears when gradually decreasing a growth rate of silicon single crystal during pulling and a growth rate at a boundary where a high oxygen precipitation Nv region having a density of BMDs of 1×107 numbers/cm3 or more and/or a wafer lifetime of 30 μsec or less after oxygen precipitation treatment disappears when gradually decreasing the growth rate further. Thereby, there is provided a silicon single crystal which does not belong to any of V region rich in vacancy, OSF region and I region rich in interstitial silicon, and has excellent electrical characteristics and gettering capability, so that yield of devices can be surely improved, and also an epitaxial wafer.
摘要翻译:在通过Czochralski法制造单晶硅的方法中,通过控制在逐渐减小生长时OSF环消失后残留的Cu沉积检测到的缺陷区域的边界处的生长速度之间的生长速率生长单晶 拉伸时的硅单晶速率和BMD密度为1×10 7 / cm 3以上的高氧沉淀Nv区域的边界处的生长速度,以及 /或在氧沉淀处理后30微米或更小的晶片寿命在进一步降低生长速率时消失。 由此,提供了不属于富含空隙的V区,OSF区和富含间隙硅的I区的任何一种的硅单晶,并且具有优异的电特性和吸杂能力,从而可以可靠地提高器件的产量 ,以及外延晶片。
摘要:
There can be provided a silicon single crystal wafer grown according to Czochralski method wherein the whole plane of the wafer is occupied by N region on the outside of OSF generated in a shape of a ring by thermal oxidation treatment and there exists no defect region detected by Cu deposition. Thereby, there can be produced a silicon single crystal wafer according to CZ method, which does not belong to any of V region rich in vacancies, OSF region and I region rich in interstitial silicons, and can surely improve electric characteristics such as oxide dielectric breakdown voltage characteristics or the like under stable manufacture conditions.
摘要:
The present invention discloses a graphite heater for producing a single crystal used when producing a single crystal by the Czochralski method which comprises at least a terminal part to which electric current is supplied and a cylindrical heat generating part by resistance heating and are provided so as to surround a crucible for containing a raw material melt wherein the heat generating part has heat generating slit parts formed by being provided with upper slits extending downward from the upper end and lower slits extending upwards from the lower end by turns, and a length of at least one slit of the upper slits differs from others and/or a length of at least one slit of the lower slits differs from others so that a heat generating distribution of the heat generating part may be changed. Thereby, there can be provided a graphite heater for producing a single crystal which makes it possible to produce a silicon single crystal with high productivity when the silicon single crystal is pulled in a predetermined defect-free region or a predetermined defect region.
摘要:
The present invention is a method for producing a single crystal of which a whole plane in a radial direction is a defect-free region with pulling the single crystal from a raw material melt in a chamber by Czochralski method, wherein a pulling condition is changed in a direction of the crystal growth axis during pulling the single crystal so that a margin of a pulling rate is always a predetermined value or more that the single crystal of which the whole plane in a radial direction is a defect-free region can be pulled. Thereby, there can be provided a method for producing a single crystal in which when a single crystal is produced by CZ method, the single crystal of which a whole plane in a radial direction is a defect-free region entirely in a direction of the crystal growth axis can be produced with stability.